Clayton.Markov.DATA {Copula.Markov} | R Documentation |
Generating Time Series Data Under a Copula-Based Markov Chain Model with the Clayton Copula
Description
Time-series data are generated under a copula-based Markov chain model with the Clayton copula. See Long et al. (2014) and Emura et al. (2017) for the details.
Usage
Clayton.Markov.DATA(n, mu, sigma, alpha)
Arguments
n |
sample size |
mu |
mean |
sigma |
standard deviation |
alpha |
association parameter |
Details
-1<alpha<0 for negative association; alpha>0 for positive association
Value
Time series data of size n.
Author(s)
Takeshi Emura
References
Emura T, Long TH, Sun LH (2017), R routines for performing estimation and statistical process control under copula-based time series models, Communications in Statistics - Simulation and Computation, 46 (4): 3067-87
Long TH and Emura T (2014), A control chart using copula-based Markov chain models, Journal of the Chinese Statistical Association 52 (No.4): 466-96
Examples
set.seed(1)
Y=Clayton.Markov.DATA(n=1000,mu=0,sigma=1,alpha=8)
Clayton.Markov.MLE(Y,plot=TRUE)
[Package Copula.Markov version 2.9 Index]