FrankClayton.Weibull.MLE {Copula.Markov.survival} | R Documentation |
Parameter estimation based on the Frank copula for serial dependence and the Clayton copula for dependent censoring with the Weibull distributions
Description
Perform two-stage estimation based on the Frank copula C_theta for serial dependence and the Clayton copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). The jackknife method estimates the asymptotic covariance matrix. Parametric bootstrap is applied while doing Kolmogorov-Smirnov tests and Cramer-von Mises test. The guide for using this function shall be explained by Huang (2019), and Huang, Wang and Emura (2020).
Usage
FrankClayton.Weibull.MLE(subject, t.event, event, t.death, death, stageI, Weibull.plot,
jackknife, plot, GOF, GOF.plot, rep.GOF, digit)
Arguments
subject |
a vector for numbers of subject |
t.event |
a vector for event times |
event |
a vector for event indicator (=1 if recurrent; =0 if censoring) |
t.death |
a vector for death times |
death |
a vector for death indicator (=1 if death; =0 if censoring) |
stageI |
an option to select MLE or LSE method for the 1st-stage optimization |
Weibull.plot |
if TRUE, show the Weibull probability plot |
jackknife |
if TRUE, the jackknife method is used for estimate covariance matrix (default = TRUE) |
plot |
if TRUE, the plots for marginal distributions are shown (default = FALSE) |
GOF |
if TRUE, show the p-values for KS-test and CvM-test |
GOF.plot |
if TRUE, show the model diagnostic plot |
rep.GOF |
repetition number of parametric bootstrap |
digit |
accurate to some decimal places |
Details
When jackknife=FALSE, the corresponding standard error and confidence interval values are shown as NA.
Value
A list with the following elements:
Sample_size |
Sample size N |
Case |
Count for event occurences |
scale1 |
Scale parameter for Weib(scale1, shape1) |
shape1 |
Shape parameter for Weib(scale1, shape1) |
scale2 |
Scale parameter for Weib(scale2, shape2) |
shape2 |
Shape parameter for Weib(scale2, shape2) |
theta |
Copula parameter for the Frank copula C_theta |
alpha |
Copula parameter for the Clayton copula tilde(C)_alpha |
COV |
Asymptotic covariance estimated by the jackknife method |
KS |
Kolmogorov-Smirnov test statistics |
p.KS |
P-values for Kolmogorov-Smirnov tests |
CM |
Cramer-von Mises test statistics |
p.CM |
P-values for Cramer-von Mises tests |
Convergence |
Convergence results for each stage |
Jackknife_error |
Count for error in jackknife repititions |
Log_likelihood |
Log-likelihood values |
Author(s)
Xinwei Huang
Examples
data = FrankClayton.Weibull.data(N = 30, scale1 = 1, shape1 =0.5, theta = 2,
scale2 = 0.45, shape2 = 0.5, alpha = 2, b = 10, l = 300)
FrankClayton.Weibull.MLE(subject = data$Subject,
t.event = data$T_ij, event = data$delta_ij,
t.death = data$T_i_star, death = data$delta_i_star,
jackknife= TRUE, plot = TRUE)