condQestCopC {CopCTS} | R Documentation |
Conditional Quantile Estimation
Description
Given estiamted copula with copula parameter and specified marginal distribution, obtain the conditional qth quantile of Y_n+1 given Y1,...,Yn.
Usage
condQestCopC(tao,Yc,d,delta,copula,cop=NULL,theta=NULL,nIS=10000,
MARGIN=NULL,MARGIN.inv=NULL,...)
Arguments
tao |
the desired quantile level, a numeric value between 0 and 1. |
Yc |
the Nx1 vector of observed responses that are subject to lower detection limit. |
d |
the lower detection limit. |
delta |
the Nx1 vector of censoring indicator with 1 indicating uncensored and 0 indicating left censored. |
copula |
the input copula object with copula parameter plugged in.
If specified, |
cop |
the choice of copula function. There are currently five available copula funcitons, including Clayton copula, Gaussian copula, Gumbel copula, Joe copula and Frank copula. Specify one from "Clayton","Gaussian","Gumbel","Joe" and "Frank". |
theta |
the copula parameter. |
nIS |
the size for sequential importance sampling. The default is 10000. |
MARGIN |
the marginal distribution of the latent time series. |
MARGIN.inv |
the inverse marginal distribution of the latent time series. |
... |
additional parameters for the marginal distribution of the latent time series. |
Value
condQestCopC
returns the conditional tao-th quantile of Y_n+1 given Y1,...,Yn
based on the specified copula function and marginal distribution.
References
Li, F., Tang, Y. and Wang, H. (2018). Copula-Based Semiparametric Analysis for Time Series Data with Detection Limits, technical report.
Examples
set.seed(20)
Y = genLatentY(cop = "Clayton", theta = 1, N = 30)
d = -0.5
delta = (Y>d)
Yc = pmax(d,Y)
cq60.real = condQestCopC(0.6,Yc,d,delta,copula=claytonCopula(1),nIS = 50,
MARGIN=pnorm,MARGIN.inv=qnorm)
### Use selected copula
selCopC = selectCopC(cop.type = c("Clayton","Frank"),Yc,d,delta,nIS=50)
cq60.est = condQestCopC(0.6,Yc,d,delta,selCopC$Selected,nIS=50)