CNpredict {ContaminatedMixt} | R Documentation |
Cluster Prediction
Description
Cluster prediction for multivariate observations based on uncontaminated/contaminated normal mixture models
Usage
CNpredict(newdata, prior, mu, invSigma, eta=NULL, alpha=NULL)
## S3 method for class 'ContaminatedMixt'
predict(object, newdata, ...)
Arguments
newdata |
a |
object |
an object of class |
... |
Options to be passed to |
prior |
a vector with |
mu |
a |
invSigma |
an array with |
alpha |
a vector of |
eta |
a vector of |
Value
a vector with group membership
Author(s)
Antonio Punzo, Angelo Mazza, Paul D. McNicholas
References
Punzo A., Mazza A. and McNicholas P. D. (2018). ContaminatedMixt: An R Package for Fitting Parsimonious Mixtures of Multivariate Contaminated Normal Distributions. Journal of Statistical Software, 85(10), 1–25.
Punzo A. and McNicholas P. D. (2016). Parsimonious mixtures of multivariate contaminated normal distributions. Biometrical Journal, 58(6), 1506–1537.
See Also
Examples
point <- c(0,0,0)
mu <- c(1,-2,3)
Sigma <- diag(3)
alpha <- 0.8
eta <- 5
f <- dCN(point, mu, Sigma, alpha, eta)
x <- rCN(10, mu, Sigma, alpha, eta)