gaussian_mixture_clusters {ConsensusClustering} | R Documentation |
Generate clusters of data points from Gaussian-mixture-model distributions with randomly generated parameters
Description
Generate clusters of data points from Gaussian-mixture-model distributions with randomly generated parameters
Usage
gaussian_mixture_clusters(
n = c(50, 50),
dim = 2,
sd.max = 0.1,
sd.noise = 0.01,
r.range = c(0.1, 1),
mixture.range = c(1, 4),
mixture.sep = 0.5
)
Arguments
n |
vector of number of data points in each cluster
The length of |
dim |
number of dimensions |
sd.max |
maximum standard deviation of clusters |
sd.noise |
standard deviation of the added noise |
r.range |
the range (min, max) of distance of cluster centers from the origin |
mixture.range |
range (min, max) of the number of Gaussian-mixtures. |
mixture.sep |
scaler indicating the separability between the mixtures. |
Value
a list of data points (X) and cluster labels (class)
Examples
data = gaussian_mixture_clusters()
X = data$X
y = data$class
[Package ConsensusClustering version 1.5.0 Index]