TVPVAR {ConnectednessApproach} | R Documentation |
Time-varying parameter vector autoregression
Description
Estimate TVP-VAR model
Usage
TVPVAR(x, configuration = list(l = c(0.99, 0.99), nlag = 1, prior = NULL))
Arguments
x |
zoo data matrix |
configuration |
model configuration |
nlag |
Lag length |
prior |
List of prior VAR coefficients and variance-covariance matrix |
l |
forgetting factors (kappa1, kappa2) |
Value
Estimate TVP-VAR model
Author(s)
David Gabauer
References
Koop, G., & Korobilis, D. (2014). A new index of financial conditions. European Economic Review, 71, 101-116.
Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. Journal of Risk and Financial Management, 13(4), 84.
Examples
data("dy2012")
prior = BayesPrior(dy2012, nlag=1)
fit = TVPVAR(dy2012, configuration=list(nlag=1, prior=prior, l=c(0.99,0.99)))
[Package ConnectednessApproach version 1.0.3 Index]