| InvariantConditionalQuantilePrediction {CondIndTests} | R Documentation | 
Invariant conditional quantile prediction.
Description
Tests the null hypothesis that Y and E are independent given X.
Usage
InvariantConditionalQuantilePrediction(Y, E, X, alpha = 0.05,
  verbose = FALSE, test = fishersTestExceedance,
  mtry = sqrt(NCOL(X)), ntree = 100, nodesize = 5, maxnodes = NULL,
  quantiles = c(0.1, 0.5, 0.9), returnModel = FALSE)
Arguments
Y | 
 An n-dimensional vector.  | 
E | 
 An n-dimensional vector. If   | 
X | 
 A matrix or dataframe with n rows and p columns.  | 
alpha | 
 Significance level. Defaults to 0.05.  | 
verbose | 
 If   | 
test | 
 Unconditional independence test that tests whether exceedence is
independent of E. Defaults to   | 
mtry | 
 Random forest parameter: Number of variables randomly sampled as
candidates at each split. Defaults to   | 
ntree | 
 Random forest parameter: Number of trees to grow. Defaults to 100.  | 
nodesize | 
 Random forest parameter: Minimum size of terminal nodes. Defaults to 5.  | 
maxnodes | 
 Random forest parameter: Maximum number of terminal nodes trees in the forest can have. Defaults to NULL.  | 
quantiles | 
 Quantiles for which to test independence between exceedence and E.
Defaults to   | 
returnModel | 
 If   | 
Value
A list with the following entries:
-  
pvalueThe p-value for the null hypothesis that Y and E are independent given X. -  
modelThe fitted quantile regression forest model ifreturnModel = TRUE. 
Examples
# Example 1
n <- 1000
E <- rbinom(n, size = 1, prob = 0.2)
X <- 4 + 2 * E + rnorm(n)
Y <- 3 * (X)^2 + rnorm(n)
InvariantConditionalQuantilePrediction(Y, as.factor(E), X)
# Example 2
E <- rbinom(n, size = 1, prob = 0.2)
X <- 4 + 2 * E + rnorm(n)
Y <- 3 * E + rnorm(n)
InvariantConditionalQuantilePrediction(Y, as.factor(E), X)