Conake-package {Conake} | R Documentation |
Continuous Associated Kernel Estimation
Description
Continuous smoothing of probability density function defined on a compact or semi-infinite support
is performed using four continuous associated kernels: extended beta, gamma, lognormal and reciprocal inverse Gaussian. The cross-validation technique is also implemented to select the smoothing parameter.
Details
- The estimated density:
The kernel estimator
of
is defined as
where
is one of the kernels defined below. In practice, we first calculate the normalizing constant
where T is the support of the density function. This normalizing constant is not generally equal to 1. The estimated density is then
.
Given a data sample, the Conake package allows to compute the density dke
using one of the four kernel functions: extended beta, gamma, lognormal and reciprocal inverse Gaussian. The bandwidth parameter is calculated using the cross-validation technique cvbw
.The kernel functions kef
are defined below.
- Extended beta kernel :
The extended beta kernel is defined on
with
,
and
:
where
is the usual beta function with
,
and
denotes the indicator function of A. For
and
, the extended beta kernel corresponds to the beta kernel which is the probability density function of the beta distribution with shape parameters
and
; see Libengué (2013).
- Gamma kernel:
The gamma kernel is defined on
with
and
:
where
is the classical gamma function. It is the probability density function of the gamma distribution with scale parameter
and shape parameter
; see Chen (2000) and also Libengué (2013).
- Lognormal kernel :
The lognormal kernel is defined on
with
and
:
It is the probability densiy function of the classical lognormal distribution with mean
and standard deviation
; see Igarashi and Kakizawa (2015) and also Libengué (2013).
- Reciprocal inverse Gaussian kernel:
The reciprocal inverse Gaussian kernel is defined on
with
and
:
where
. It is the probability densiy function of the classical reciprocal inverse Gaussian distribution with mean
and standard deviation
; see Igarashi and Kakizawa (2015) and also Libengué (2013).
- The bandwidth selection:
The cross-validation technique
cvbw
is used for the bandwidth selection. The optimal parameter is the one which minimizes the cross-validation function defined by:where
is the density estimator computed without the observation
.
Author(s)
W. E. Wansouwé, F.G. Libengué and C. C. Kokonendji
Maintainer: W. E. Wansouwé <ericwansouwe@gmail.com>
References
Chen, S. X. (1999). Beta kernels estimators for density functions, Computational Statistics and Data Analysis 31, 131 - 145.
Chen, S. X. (2000). Gamma kernels estimators for density functions, Annals of the Institute of Statistical Mathematics 52, 471 - 480.
Libengué, F.G. (2013). Méthode Non-Paramétrique par Noyaux Associés Mixtes et Applications, Ph.D. Thesis Manuscript (in French) to Université de Franche-Comté, Besançon, France and Université de Ouagadougou, Burkina Faso, June 2013, LMB no. 14334, Besançon.
Igarashi, G. and Kakizawa, Y. (2015). Bias correction for some asymmetric kernel estimators, Journal of Statistical Planning and Inference 159, 37 - 63.