pgfIlogarithmicbinomial {Compounding} R Documentation

## Function pgfIlogarithmicbinomial

### Description

This function calculates value of the pgf's inverse of the logarithmic-binomial distribution.

### Usage

```pgfIlogarithmicbinomial(s, params)
```

### Arguments

 `s` Value of the parameter of the pgf. It should be from interval [-1,1]. In the opposite pgf diverges. `params` List of the parameters of the logarithmic-binomial distribution, such that params<-c(p1,p2,m,n), where p1, p2 are probabilities, and m, n are positive integers.

### Author(s)

S. Nadarajah, B. V. Popovic, M. M. Ristic

### References

Johnson N, Kotz S, Kemp A (1992) Univariate Discrete Distributions, John Wiley and Sons, New York

http://www.am.qub.ac.uk/users/g.gribakin/sor/Chap3.pdf

### Examples

```params<-c(.9,.7,4)
pgfIlogarithmicbinomial(.5,params)

## The function is currently defined as

pgfIlogarithmicbinomial <- function(s,params) {
k<-s[abs(s)>1]
if (length(k)>0)
warning("At least one element of the vector s are out of interval [-1,1]")
if (length(params)<3)
stop("At least one value in params is missing")
if (length(params)>3)
stop("The length of params is 3")
theta<-params
p<-params
n<-params
if ((theta>=1)|(theta<=0))
stop ("Parameter theta belongs to the interval (0,1)")
if ((p>=1)|(p<=0))
stop ("Parameter p belongs to the interval (0,1)")
if (n<0)
stop("Parameter n must be positive")
if(!(abs(n-round(n))<.Machine\$double.eps^0.5))
stop("Parameter n must be positive integer")
zval<-(1-theta^s)/(1-theta)
(zval^(1/n)-1+p)/p
}
```

[Package Compounding version 1.0.2 Index]