pgfDhypergeometric {Compounding} | R Documentation |
This function calculates value of the pgf's first derivative of the hypergeometric distribution.
pgfDhypergeometric(s, params)
s |
Value of the parameter of the pgf. It should be from interval [-1,1]. In the opposite pgf diverges. |
params |
List of the parameters of the hypergeometric distribution, such that params<-c(m,n,p), where m is the number of white balls in the urn, n is the number of black balls in the urn, must be less or equal than m, and p is the probability. |
[1] 0.6
S. Nadarajah, B. V. Popovic, M. M. Ristic
Johnson N, Kotz S, Kemp A (1992) Univariate Discrete Distributions, John Wiley and Sons, New York
Hankin R.K.S, Lee A (2006) A new family of non-negative distributions. Australia and New Zealand Journal of Statistics 48(1): 67(78)
http://www.am.qub.ac.uk/users/g.gribakin/sor/Chap3.pdf
params<-c(5,3,.2) pgfDhypergeometric(.5,params) ## The function is currently defined as pgfDhypergeometric <- function(s,params) { require(hypergeo) k<-s[abs(s)>1] if (length(k)>0) warning("At least one element of the vector s are out of interval [-1,1]") if (length(params)<3) stop("At least one value in params is missing") if (length(params)>3) stop("The length of params is 3") m<-params[1] n<-params[2] p<-params[3] if (n<0) stop("Parameter n must be positive") if(!(abs(n-round(n))<.Machine$double.eps^0.5)) stop("Parameter n must be positive integer") if (m<0) stop("Parameter m must be positive") if(!(abs(m-round(m))<.Machine$double.eps^0.5)) stop("Parameter m must be positive integer") if ((p>=1)|(p<=0)) stop ("Parameter p belongs to the interval (0,1)") if (m<n) stop ("Parameter m is greater or equal then n ") n*p*Re(hypergeo(1-n,1-m*p,1-m,1-s)) }