The transformation-free linear regression (TFLR) for compositional responses and predictors {Compositional}R Documentation

Transformation-free linear regression (TFLR) for compositional responses and predictors

Description

Transformation-free linear regression (TFLR) for compositional responses and predictors.

Usage

tflr(y, x, xnew = NULL)

Arguments

y

A matrix with the compositional response. Zero values are allowed.

x

A matrix with the compositional predictors. Zero values are in general allowed, but there can be cases when these are problematic.

xnew

If you have new data use it, otherwise leave it NULL.

Details

The transformation-free linear regression for compositional responses and predictors is implemented. The function to be minized is -\sum_{i=1}^ny_i\log{y_i/(X_iB)}. This is an efficient self implementation.

Value

A list including:

kl

The Kullback-Leibler divergence between the observed and the fitted response compositional data.

be

The beta coefficients.

est

The fitted values of xnew if xnew is not NULL.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Fiksel J., Zeger S. and Datta A. (2022). A transformation-free linear regression for compositional outcomes and predictors. Biometrics, 78(3): 974–987.

Tsagris. M. (2024). Constrained least squares simplicial-simplicial regression. https://arxiv.org/pdf/2403.19835.pdf

See Also

cv.tflr, scls kl.alfapcr

Examples

library(MASS)
y <- rdiri(214, runif(3, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- tflr(y, x, x)
mod

[Package Compositional version 6.9 Index]