Multivariate skew normal random values simulation on the simplex {Compositional} | R Documentation |
Multivariate skew normal random values simulation on the simplex
Description
Multivariate skew normal random values simulation on the simplex.
Usage
rcompsn(n, xi, Omega, alpha, dp = NULL, type = "alr")
Arguments
n |
The sample size, a numerical value. |
xi |
A numeric vector of length |
Omega |
A |
alpha |
A numeric vector which regulates the slant of the density. |
dp |
A list with three elements, corresponding to xi, Omega and alpha described above. The default value is FALSE. If dp is assigned, individual parameters must not be specified. |
type |
The alr (type = "alr") or the ilr (type = "ilr") is to be used for closing the Euclidean data onto the simplex. |
Details
The algorithm is straightforward, generate random values from a multivariate t distribution in R^d
and brings the
values to the simplex S^d
using the inverse of a log-ratio transformation.
Value
A matrix with the simulated data.
Author(s)
Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.
References
Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83(4): 715-726.
Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal distribution. Journal of the Royal Statistical Society Series B, 61(3):579-602. Full-length version available from http://arXiv.org/abs/0911.2093
Aitchison J. (1986). The statistical analysis of compositional data. Chapman & Hall.
See Also
Examples
x <- as.matrix(iris[, 1:2])
par <- sn::msn.mle(y = x)$dp
y <- rcompsn(100, dp = par)
comp.den(y, dist = "skewnorm")
ternary(y)