Principal coordinate analysis using the Jensen-Shannon divergence {Compositional} | R Documentation |
Principal coordinate analysis using the Jensen-Shannon divergence
Description
Principal coordinate analysis using the Jensen-Shannon divergence.
Usage
esov.mds(x, k = 2, eig = TRUE)
Arguments
x |
A matrix with the compositional data. Zero values are allowed. |
k |
The maximum dimension of the space which the data are to be represented in. This can be a number between
1 and |
eig |
Should eigenvalues be returned? The default value is TRUE. |
Details
The function computes the Jensen-Shannon divergence matrix and then plugs it into the classical multidimensional scaling function in the "cmdscale" function.
Value
A list with the results of "cmdscale" function.
Author(s)
Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.
References
Aitchison J. (1986). The statistical analysis of compositional data. Chapman & Hall.
Cox, T. F. and Cox, M. A. A. (2001). Multidimensional Scaling. Second edition. Chapman and Hall.
Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Chapter 14 of Multivariate Analysis, London: Academic Press.
Tsagris, Michail (2015). A novel, divergence based, regression for compositional data. Proceedings of the 28th Panhellenic Statistics Conference, 15-18/4/2015, Athens, Greece. https://arxiv.org/pdf/1511.07600.pdf
See Also
Examples
x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
a <- esov.mds(x)