The alpha-kernel regression with compositional response data {Compositional} | R Documentation |
The \alpha
-kernel regression with compositional response data
Description
The \alpha
-kernel regression with compositional response data.
Usage
akern.reg( xnew, y, x, a = seq(0.1, 1, by = 0.1),
h = seq(0.1, 1, length = 10), type = "gauss" )
Arguments
xnew |
A matrix with the new predictor variables whose compositions are to be predicted. |
y |
A matrix with the compositional response data. Zeros are allowed. |
x |
A matrix with the available predictor variables. |
a |
The value(s) of |
h |
The bandwidth value(s) to consider. |
type |
The type of kernel to use, "gauss" or "laplace". |
Details
The \alpha
-kernel regression for compositional response variables is
applied.
Value
A list with the estimated compositional response data for each value of
\alpha
and h.
Author(s)
Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.
References
Tsagris M., Alenazi A. and Stewart C. (2023). Flexible non-parametric regression models for compositional response data with zeros. Statistics and Computing, 33(106).
https://link.springer.com/article/10.1007/s11222-023-10277-5
See Also
akernreg.tune, aknn.reg, aknnreg.tune,
alfa.reg, comp.ppr, comp.reg, kl.compreg
Examples
y <- as.matrix( iris[, 1:3] )
y <- y / rowSums(y)
x <- iris[, 4]
mod <- akern.reg( x, y, x, a = c(0.4, 0.5), h = c(0.1, 0.2) )