normalise_ci {Compind} | R Documentation |
Normalisation and polarity functions
Description
This function lets to normalise simple indicators according to the polarity of each one.
Usage
normalise_ci(x, indic_col, polarity, method=1, z.mean=0, z.std=1, ties.method ="average")
Arguments
x |
A data frame containing simple indicators. |
indic_col |
Simple indicators column number. |
method |
Normalisation methods:
|
polarity |
Polarity vector: "POS" = positive, "NEG" = negative. The polarity of a individual indicator is the sign of the relationship between the indicator and the phenomenon to be measured (e.g., in a well-being index, "GDP per capita" has 'positive' polarity and "Unemployment rate" has 'negative' polarity). |
z.mean |
If method=1, Average shifting parameter. Default is 0. |
z.std |
If method=1, Standard deviation expansion parameter. Default is 1. |
ties.method |
If method=3, A character string specifying how ties are treated, see |
Value
ci_norm |
A data.frame containing normalised score of the choosen simple indicators. |
norm_method |
Normalisation method used. |
Author(s)
Vidoli F.
References
OECD, "Handbook on constructing composite indicators: methodology and user guide", 2008, pag.30.
See Also
Examples
data(EU_NUTS1)
# Standard z-scores normalisation #
data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=1,z.mean=0, z.std=1)
summary(data_norm$ci_norm)
# Normalisation for MPI index #
data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=1,z.mean=100, z.std=10)
summary(data_norm$ci_norm)
data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=2)
summary(data_norm$ci_norm)