ci_owa {Compind} | R Documentation |
Ordered Weighted Average (OWA)
Description
The Ordered Weighted Averaging (OWA) operator is a multi-criteria decision aggregation method that is structurally non-compensatory (Yager, 1988).
Usage
ci_owa(x, id, indic_col, atleastjp)
Arguments
x |
A data.frame containing score of the simple indicators. |
id |
Units' unique identifier. |
indic_col |
Simple indicators column number. |
atleastjp |
Fuzzy linguistic quantifier "At least j". |
Value
An object of class "CI". This is a list containing the following elements:
CI_OWA_n |
Composite indicator estimated values for OWA-. |
CI_OWA_p |
Composite indicator estimated values for OWA+. |
wp |
OWA weights' vector "More than j". |
wn |
OWA weights' vector "At least j". |
ci_method |
Method used; for this function ci_method="owa". |
Author(s)
Fusco E., Liborio M.P.
References
Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transactions on systems, Man, and Cybernetics, 18(1), 183-190.
See Also
Examples
data(data_HPI)
data_HPI = data_HPI[complete.cases(data_HPI),]
data_HPI_2019 = data_HPI[data_HPI$year==2019,]
Indic_name = c("Life_Expectancy","Ladder_of_life","Ecological_Footprint")
Indic_norm = data.frame("ISO"=data_HPI_2019$ISO,
normalise_ci(data_HPI_2019[, Indic_name],
c(1:3),
c("POS","POS","NEG"),
method=2)$ci_norm)
Indic_norm = Indic_norm[Indic_norm$Life_Expectancy>0 &
Indic_norm$Ladder_of_life>0 &
Indic_norm$Ecological_Footprint >0 ,]
atleast = 2
CI_owa_n = ci_owa(Indic_norm, id="ISO",
indic_col=c(2:4),
atleastjp=atleast)$CI_OWA_n
CI_owa_p = ci_owa(Indic_norm, id="ISO",
indic_col=c(2:4),
atleastjp=atleast)$CI_OWA_p