ci_ogwa {Compind} | R Documentation |
Ordered Geographically Weighted Average (OWA)
Description
The Ordered Geographically Weighted Averaging (OWA) operator is an extension of the multi-criteria decision aggregation method called OWA (Yager, 1988) that accounts for spatial heterogeneity.
Usage
ci_ogwa(x, id, indic_col, atleastjp, coords,
kernel = "bisquare", adaptive = F, bw,
p = 2, theta = 0, longlat = F, dMat)
Arguments
x |
A data.frame containing score of the simple indicators. |
id |
Units' unique identifier. |
indic_col |
Simple indicators column number. |
coords |
A two-column matrix of latitude and longitude coordinates. |
atleastjp |
Fuzzy linguistic quantifier "At least j". |
kernel |
function chosen as follows: gaussian: wgt = exp(-.5*(vdist/bw)^2); exponential: wgt = exp(-vdist/bw); bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise; tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise; boxcar: wgt=1 if dist < bw, wgt=0 otherwise. |
adaptive |
if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance). |
bw |
bandwidth used in the weighting function. |
p |
the power of the Minkowski distance, default is 2, i.e. the Euclidean distance. |
theta |
an angle in radians to rotate the coordinate system, default is 0. |
longlat |
if TRUE, great circle distances will be calculated. |
dMat |
a pre-specified distance matrix, it can be calculated by the function |
Value
An object of class "CI". This is a list containing the following elements:
CI_OGWA_n |
Composite indicator estimated values for OGWA-. |
CI_OGWA_p |
Composite indicator estimated values for OGWA+. |
wp |
OGWA weights' vector "More than j". |
wn |
OGWA weights' vector "At least j". |
ci_method |
Method used; for this function ci_method="ogwa". |
Author(s)
Fusco E., Liborio M.P.
References
Fusco, E., Liborio, M.P., Rabiei-Dastjerdi, H., Vidoli, F., Brunsdon, C. and Ekel, P.I. (2023), Harnessing Spatial Heterogeneity in Composite Indicators through the Ordered Geographically Weighted Averaging (OGWA) Operator. Geographical Analysis. https://doi.org/10.1111/gean.12384
See Also
Examples
data(data_HPI)
data_HPI_2019 = data_HPI[data_HPI$year==2019,]
Indic_name = c("Life_Expectancy","Ladder_of_life","Ecological_Footprint")
Indic_norm = normalise_ci(data_HPI_2019, Indic_name, c("POS","POS","NEG"),method=2)$ci_norm
Indic_norm = Indic_norm[Indic_norm$Life_Expectancy>0 &
Indic_norm$Ladder_of_life>0 &
Indic_norm$Ecological_Footprint >0,]
Indic_CI = data.frame(Indic_norm,
data_HPI_2019[rownames(Indic_norm),
c("lat","long","HPI","ISO","Country")])
atleast = 2
coord = Indic_CI[,c("lat","long")]
CI_ogwa_n = ci_ogwa(Indic_CI, id="ISO",
indic_col=c(1:3),
atleastjp=atleast,
coords=as.matrix(coord),
kernel = "gaussian",
adaptive=FALSE,
longlat=FALSE)$CI_OGWA_n
#CI_ogwa_p = ci_ogwa(Indic_CI, id="ISO",
# indic_col=c(1:3),
# atleastjp=atleast,
# coords=as.matrix(coord),
# kernel = "gaussian",
# adaptive=FALSE,
# longlat=FALSE)$CI_OGWA_p