ci_bod_constr {Compind} | R Documentation |
Constrained Benefit of the Doubt approach (BoD)
Description
The constrained Benefit of the Doubt function lets to introduce additional constraints to the weight variation in the optimization procedure so that all the weights obtained are greater than a lower value (low_w) and less than an upper value (up_w).
Usage
ci_bod_constr(x,indic_col,up_w,low_w)
Arguments
x |
A data.frame containing simple indicators. |
indic_col |
A numeric list indicating the positions of the simple indicators. |
up_w |
Importance weights upper bound. |
low_w |
Importance weights lower bound. |
Value
An object of class "CI". This is a list containing the following elements:
ci_bod_constr_est |
Constrained composite indicator estimated values. |
ci_method |
Method used; for this function ci_method="bod_constrained". |
ci_bod_constr_weights |
Raw constrained weights assigned to the simple indicators. |
Author(s)
Rogge N., Vidoli F.
References
Van Puyenbroeck T. and Rogge N. (2017) "Geometric mean quantity index numbers with Benefit-of-the-Doubt weights", European Journal of Operational Research, Volume 256, Issue 3, Pages 1004 - 1014.
See Also
Examples
i1 <- seq(0.3, 0.5, len = 100) - rnorm (100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm (100, 0.2, 0.03)
Indic = data.frame(i1, i2)
CI = ci_bod_constr(Indic,up_w=1,low_w=0.05)
data(EU_NUTS1)
data_norm = normalise_ci(EU_NUTS1,c(2:3),polarity = c("POS","POS"), method=2)
CI = ci_bod_constr(data_norm$ci_norm,c(1:2),up_w=1,low_w=0.05)