ci_bod_constr {Compind} | R Documentation |
The constrained Benefit of the Doubt function lets to introduce additional constraints to the weight variation in the optimization procedure so that all the weights obtained are greater than a lower value (low_w) and less than an upper value (up_w).
ci_bod_constr(x,indic_col,up_w,low_w)
x |
A data.frame containing simple indicators. |
indic_col |
A numeric list indicating the positions of the simple indicators. |
up_w |
Importance weights upper bound. |
low_w |
Importance weights lower bound. |
An object of class "CI". This is a list containing the following elements:
ci_bod_constr_est |
Constrained composite indicator estimated values. |
ci_method |
Method used; for this function ci_method="bod_constrained". |
ci_bod_constr_weights |
Raw constrained weights assigned to the simple indicators. |
Rogge N., Vidoli F.
Van Puyenbroeck T. and Rogge N. (2017) "Geometric mean quantity index numbers with Benefit-of-the-Doubt weights", European Journal of Operational Research, Volume 256, Issue 3, Pages 1004 - 1014.
i1 <- seq(0.3, 0.5, len = 100) - rnorm (100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm (100, 0.2, 0.03)
Indic = data.frame(i1, i2)
CI = ci_bod_constr(Indic,up_w=1,low_w=0.05)
data(EU_NUTS1)
data_norm = normalise_ci(EU_NUTS1,c(2:3),polarity = c("POS","POS"), method=2)
CI = ci_bod_constr(data_norm$ci_norm,c(1:2),up_w=1,low_w=0.05)