liu {CompQuadForm} | R Documentation |
Liu's method
Description
Distribution function (survival function in fact) of quadratic forms in normal variables using Liu et al.'s method.
Usage
liu(q, lambda, h = rep(1, length(lambda)),
delta = rep(0, length(lambda)))
Arguments
q |
value point at which the survival function is to be evaluated |
lambda |
distinct non-zero characteristic roots of |
h |
respective orders of multiplicity |
delta |
non-centrality parameters |
Details
New chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables.
Computes P[Q>q]
where Q=\sum_{j=1}^n\lambda_j\chi^2(h_j,\delta_j)
.
This method does not work as good as the Imhof's method. Thus Imhof's method should be recommended.
Value
Qq |
|
Author(s)
Pierre Lafaye de Micheaux (lafaye@dms.umontreal.ca) and Pierre Duchesne (duchesne@dms.umontreal.ca)
References
P. Duchesne, P. Lafaye de Micheaux, Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods, Computational Statistics and Data Analysis, Volume 54, (2010), 858-862
H. Liu, Y. Tang, H.H. Zhang, A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables, Computational Statistics and Data Analysis, Volume 53, (2009), 853-856
Examples
# Some results from Liu et al. (2009)
# Q1 from Liu et al.
round(liu(2, c(0.5, 0.4, 0.1), c(1, 2, 1), c(1, 0.6, 0.8)), 6)
round(liu(6, c(0.5, 0.4, 0.1), c(1, 2, 1), c(1, 0.6, 0.8)), 6)
round(liu(8, c(0.5, 0.4, 0.1), c(1, 2, 1), c(1, 0.6, 0.8)), 6)
# Q2 from Liu et al.
round(liu(1, c(0.7, 0.3), c(1, 1), c(6, 2)), 6)
round(liu(6, c(0.7, 0.3), c(1, 1), c(6, 2)), 6)
round(liu(15, c(0.7, 0.3), c(1, 1), c(6, 2)), 6)
# Q3 from Liu et al.
round(liu(2, c(0.995, 0.005), c(1, 2), c(1, 1)), 6)
round(liu(8, c(0.995, 0.005), c(1, 2), c(1, 1)), 6)
round(liu(12, c(0.995, 0.005), c(1, 2), c(1, 1)), 6)
# Q4 from Liu et al.
round(liu(3.5, c(0.35, 0.15, 0.35, 0.15), c(1, 1, 6, 2), c(6, 2, 6, 2)),
6)
round(liu(8, c(0.35, 0.15, 0.35, 0.15), c(1, 1, 6, 2), c(6, 2, 6, 2)), 6)
round(liu(13, c(0.35, 0.15, 0.35, 0.15), c(1, 1, 6, 2), c(6, 2, 6, 2)), 6)