add.risk {CoMiRe} | R Documentation |
Additional risk function
Description
Additional risk function estimated from the object fit
Usage
add.risk(y, x, fit, mcmc, a, alpha=0.05,
x.grid=NULL, y.grid=NULL)
Arguments
y |
optional numeric vector for the response used in |
x |
numeric vector for the covariate relative to the dose of exposure used in |
fit |
the output of |
mcmc |
a list giving the MCMC parameters. |
a |
threshold of clinical interest for the response variable |
alpha |
level of the credible bands. |
x.grid |
optional numerical vector giving the actual values of the grid for x for plotting the additional risk function. If |
y.grid |
optional numerical vector giving the actual values of the grid for y for plotting the additional risk function. If |
Value
A list of arguments for generating posterior output. It contains:
mcmc.risk
a matrix containing in the lines the MCMC chains, after thinning, of the additional risk function overx.grid
, in the columns.summary.risk
a data frame with four variables: the posterior means of the additional risk function overx.grid
, the respective\alpha/2
and1-\alpha/2
quantiles, andx.grid
.
Author(s)
Antonio Canale, Arianna Falcioni
Examples
{
data(CPP)
attach(CPP)
n <- NROW(CPP)
J <- H <- 10
premature <- as.numeric(gestage<=37)
mcmc <- list(nrep=5000, nb=2000, thin=5, ndisplay=4)
## too few iterations to be meaningful. see below for safer and more comprehensive results
mcmc <- list(nrep=10, nb=2, thin=1, ndisplay=4)
prior <- list(mu.theta=mean(gestage), k.theta=10, eta=rep(1, J)/J,
alpha=rep(1,H)/H, a=2, b=2, J=J, H=H)
fit.dummy <- comire.gibbs(gestage, dde, family="continuous",
mcmc=mcmc, prior=prior, seed=1, max.x=180)
risk.data <- add.risk(y = gestage, x = dde, fit = fit.dummy, mcmc = mcmc,
a = 37, x.grid = seq(0, max(dde), length = 100))
riskplot(risk.data$summary.risk, xlab="DDE", x = dde, xlim = c(0,150))
## safer procedure with more iterations (it may take some time)
mcmc <- list(nrep=5000, nb=2000, thin=5, ndisplay=4)
## Fit the model for continuous y
prior <- list(mu.theta=mean(gestage), k.theta=10, eta=rep(1, J)/J,
alpha=rep(1,H)/H, a=2, b=2, J=J, H=H)
fit1 <- comire.gibbs(gestage, dde, family="continuous",
mcmc=mcmc, prior=prior, seed=5, max.x=180)
risk.data <- add.risk(y = gestage, x = dde, fit = fit1, mcmc = mcmc,
a = 37, x.grid = seq(0, max(dde), length = 100))
riskplot(risk.data$summary.risk, xlab="DDE", x = dde, xlim = c(0,150))
}