| Optimal_Clusters_GMM {ClusterR} | R Documentation | 
Optimal number of Clusters for the gaussian mixture models
Description
Optimal number of Clusters for the gaussian mixture models
Usage
Optimal_Clusters_GMM(
  data,
  max_clusters,
  criterion = "AIC",
  dist_mode = "eucl_dist",
  seed_mode = "random_subset",
  km_iter = 10,
  em_iter = 5,
  verbose = FALSE,
  var_floor = 1e-10,
  plot_data = TRUE,
  seed = 1
)
Arguments
| data | matrix or data frame | 
| max_clusters | either a numeric value, a contiguous or non-continguous numeric vector specifying the cluster search space | 
| criterion | one of 'AIC' or 'BIC' | 
| dist_mode | the distance used during the seeding of initial means and k-means clustering. One of, eucl_dist, maha_dist. | 
| seed_mode | how the initial means are seeded prior to running k-means and/or EM algorithms. One of, static_subset, random_subset, static_spread, random_spread. | 
| km_iter | the number of iterations of the k-means algorithm | 
| em_iter | the number of iterations of the EM algorithm | 
| verbose | either TRUE or FALSE; enable or disable printing of progress during the k-means and EM algorithms | 
| var_floor | the variance floor (smallest allowed value) for the diagonal covariances | 
| plot_data | either TRUE or FALSE indicating whether the results of the function should be plotted | 
| seed | integer value for random number generator (RNG) | 
Details
AIC : the Akaike information criterion
BIC : the Bayesian information criterion
In case that the max_clusters parameter is a contiguous or non-contiguous vector then plotting is disabled. Therefore, plotting is enabled only if the max_clusters parameter is of length 1.
Value
a vector with either the AIC or BIC for each iteration. In case of Error it returns the error message and the possible causes.
Author(s)
Lampros Mouselimis
Examples
data(dietary_survey_IBS)
dat = dietary_survey_IBS[, -ncol(dietary_survey_IBS)]
dat = center_scale(dat)
opt_gmm = Optimal_Clusters_GMM(dat, 10, criterion = "AIC", plot_data = FALSE)
#----------------------------
# non-contiguous search space
#----------------------------
search_space = c(2,5)
opt_gmm = Optimal_Clusters_GMM(dat, search_space, criterion = "AIC", plot_data = FALSE)