clustRowsOnStatisAxes {ClustBlock} | R Documentation |
Perform a cluster analysis of rows in a Multi-block context with clustering on STATIS axes
Description
Clustering of rows (products in sensory analysis) in a Multi-block context. The STATIS method is followed by a hierarchical algorithm.
Usage
clustRowsOnStatisAxes(Data, Blocks, NameBlocks=NULL, scale=FALSE,
nclust=NULL, gpmax=6, ncomp=5)
Arguments
Data |
data frame or matrix. Correspond to all the blocks of variables merged horizontally |
Blocks |
numerical vector. The number of variables of each block. The sum must be equal to the number of columns of Data. |
NameBlocks |
string vector. Name of each block. Length must be equal to the length of Blocks vector. If NULL, the names are B1,...Bm. Default: NULL |
scale |
logical. Should the data variables be scaled? Default: FALSE |
nclust |
numerical. Number of clusters to consider. If NULL, the Hartigan index advice is taken. |
gpmax |
logical. What is maximum number of clusters to consider? min(6, number of blocks -2) |
ncomp |
numerical. Number of axes to consider. Default:5 |
Value
group: the clustering partition.
nbgH: Advised number of clusters per Hartigan index
nbgCH: Advised number of clusters per Calinski-Harabasz index
cutree_k: the partition obtained by cutting the dendrogram in K clusters
dend: The dendrogram
param: parameters called
type: parameter passed to other functions
References
Paper submitted
See Also
indicesClusters
, summary.clusRows
, ClusMB
Examples
#####projective mapping####
library(ClustBlock)
data(smoo)
res1=clustRowsOnStatisAxes(smoo, rep(2,24))
summary(res1)
indicesClusters(smoo, rep(2,24), res1$group)
####CATA####
data(fish)
Data=fish[1:66,2:30]
chang2=change_cata_format2(Data, nprod= 6, nattr= 27, nsub = 11, nsess= 1)
res2=clustRowsOnStatisAxes(Data= chang2$Datafinal, Blocks= rep(27, 11))
indicesClusters(Data= chang2$Datafinal, Blocks= rep(27, 11),cut = res2$group, center=FALSE)