ClustBlock-package {ClustBlock}R Documentation

Clustering of Datasets

Description

Hierarchical and partitioning algorithms of blocks of variables.The CLUSTATIS method and the CLUSCATA method are the core of this package. The CATATIS methods allows to compute some indices and tests to control the quality of CATA data. Multivariate analysis and clustering of subjects for quantitative multiblock data, CATA, RATA, Free Sorting and JAR experiments are available. Clustering of rows in multi-block context (notably with ClusMB strategy) is also included.

Details

Package: ClustBlock
Type: Package
Version: 4.0.0
First version Date: 2019-03-06
Last version Date: 2024-05-21

Author(s)

Fabien Llobell, Evelyne Vigneau, Veronique Cariou, El Mostafa Qannari

Maintainer: fabienllobellresearch@gmail.com

References

Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E. M. (2020). Analysis and clustering of multiblock datasets
by means of the STATIS and CLUSTATIS methods. Application to sensometrics. Food
Quality and Preference, 79, 103520.
Llobell, F., Vigneau, E., & Qannari, E. M. (2019). Clustering datasets by means of CLUSTATIS with identification
of atypical datasets. Application to sensometrics. Food Quality and Preference, 75, 97-104.
Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E. M. (2019). A new approach for the analysis of data
and the clustering of subjects in a CATA experiment. Food quality and preference, 72, 31-39.
Llobell, F., Giacalone, D., Labenne, A., & Qannari, E. M. (2019). Assessment of the agreement and cluster analysis of
the respondents in a CATA experiment. Food Quality and Preference, 77, 184-190.
Llobell, F., & Qannari, E. M. (2020). CLUSTATIS: Cluster analysis of blocks of variables. Electronic
Journal of Applied Statistical Analysis, 13(2), 436-453.
Llobell, F. (2020). Classification de tableaux de données, applications en analyse sensorielle (Doctoral
dissertation, Nantes, Ecole nationale vétérinaire).

[Package ClustBlock version 4.0.0 Index]