clusvis {ClusVis} | R Documentation |
This function estimates the parameters used for visualization
Description
This function estimates the parameters used for visualization
Usage
clusvis(logtik.estim, prop = rep(1/ncol(logtik.estim),
ncol(logtik.estim)), logtik.obs = NULL, maxit = 10^3,
nbrandomInit = 12, nbcpu = 1)
Arguments
logtik.estim |
matrix. It contains the probabilities of classification used for parameter inference (should be sampled from the model parameter or computed from the observations). |
prop |
vector. It contains the class proportions (by default, classes have same proportion). |
logtik.obs |
matrix. It contains the probabilities of classification of the clustered sample. If missing, logtik.estim is used. |
maxit |
numeric. It limits the number of iterations for the Quasi-Newton algorithm (default 1000). |
nbrandomInit |
numeric. It defines the number of random initialization of the Quasi-Newton algorithm. |
nbcpu |
numeric. It specifies the number of CPU (only for linux) |
Value
Returns a list
Examples
## Not run:
## First example: R package Rmixmod
# Package loading
require(Rmixmod)
# Data loading (categorical data)
data("congress")
# Model-based clustering with 4 components
set.seed(123)
res <- mixmodCluster(congress[,-1], 4, strategy = mixmodStrategy(nbTryInInit = 500, nbTry=25))
# Inference of the parameters used for results visualization
# (specific for Rmixmod results)
# It is better because probabilities of classification are generated
# by using the model parameters
resvisu <- clusvisMixmod(res)
# Component interpretation graph
plotDensityClusVisu(resvisu)
# Scatter-plot of the observation memberships
plotDensityClusVisu(resvisu, add.obs = TRUE)
## Second example: R package Rmixmod
# Package loading
require(Rmixmod)
# Data loading (categorical data)
data(birds)
# Model-based clustering with 3 components
resmixmod <- mixmodCluster(birds, 3)
# Inference of the parameters used for results visualization (general approach)
# Probabilities of classification are not sampled from the model parameter,
# but observed probabilities of classification are used for parameter estimation
resvisu <- clusvis(log(resmixmod@bestResult@proba),
resmixmod@bestResult@parameters@proportions)
# Inference of the parameters used for results visualization
# (specific for Rmixmod results)
# It is better because probabilities of classification are generated
# by using the model parameters
resvisu <- clusvisMixmod(resmixmod)
# Component interpretation graph
plotDensityClusVisu(resvisu)
# Scatter-plot of the observation memberships
plotDensityClusVisu(resvisu, add.obs = TRUE)
## Third example: R package VarSelLCM
# Package loading
require(VarSelLCM)
# Data loading (categorical data)
data("heart")
# Model-based clustering with 3 components
res <- VarSelCluster(heart[,-13], 3)
# Inference of the parameters used for results visualization
# (specific for VarSelLCM results)
# It is better because probabilities of classification are generated
# by using the model parameters
resvisu <- clusvisVarSelLCM(res)
# Component interpretation graph
plotDensityClusVisu(resvisu)
# Scatter-plot of the observation memberships
plotDensityClusVisu(resvisu, add.obs = TRUE)
## End(Not run)
[Package ClusVis version 1.2.0 Index]