ClimClass {ClimClass} | R Documentation |
Classification of climate according to Koeppen - Geiger, of aridity indices, of continentality indices, of water balance after Thornthwaite, of viticultural bioclimatic indices. Drawing climographs: Thornthwaite, Peguy, Bagnouls-Gaussen.
Description
Classification of climate according to Koeppen - Geiger, of aridity indices, of continentality indices, of water balance after Thornthwaite, of viticultural bioclimatic indices. Drawing climographs: Thornthwaite, Peguy, Bagnouls-Gaussen.
ClimClass functions
The package collects several criteria for climate classification. The most general is Koeppen - Geiger's classification, as described in Trewartha (1980), implemented in function koeppen_geiger
.
Almost all sub-classes have been considered, with the only exception of those whose
attribution is based on qualitative assessment of climatic features.
A classic graphical visualization of temperature and precipitation, according to
Bagnouls and Gaussen (1953), is provided by function bagn_gau
. A
similar, but more sophisticated representation of the same variable, is that of
Walter - Lieth (Lieth et al., CD). This function is implemented in
library climatol
(http://www.climatol.eu/).
Function arid
calculates a set of six annual aridity indices (Emberger, 1955;
Lang, R., 1920; Rivas - Martinez, (website); and UNEP, 1997; De Martonne, 1925; Thornthwaite
, 1948). For the latter two also a monthly index is calculated.
A set of five continentality indices is proposed by function contin
(Gorczynski, L., 1920; Conrad, 1946; Gams, 1932; Rivas - Martinez, web page;
Amann, 1929).
Thornthwaite's method for the assessment of soil water balance (Thornthwaite, 1948; Thornthwaite and Mather, 1955; Thornthwaite and Mather, 1957) makes use of monthly series to calculate the main quantities in water balance: evapotranspiration, soil water deficit, soil water surplus. From these series, quantiles are calculated for every month, to infer climatic features concerning soil water.
Function thornthwaite
provides such analysis, and function plot
manages the plot of the quantiles of the relevant quantities.
The assessment of potential evapotranspiration by Thornthwaite and Mather's algorithm
requires the estimation of extra-atmospheric radiation, which is calculated by
function ExAtRa
, based on the algorithm of Allen et al., 2005.
Function as.datcli
tranforms a data frame as in example dataset
Trent_climate
into a data frame format like datcli
in
climatol
package. It can be used to plot Walter - Lieth's climographs
(see examples documentation).
Function oiv_ind
calculates several bioclimatic indices for
viticulture proposed by the International Organization of Viticuture, OIV
(Resolution OIV-VITI 423-2012), plus one index (Branas). One index of OIV's
list, Riou's drought index, needing daily series, is calculated by another
function, RDI
.
The data set included in the library is formed by monthly and daily time
series of temperature and precipitation from Trentino, Italy
(courtesy of Autonomous Province of Trento - Meteotrentino, and of
Fondazione Edmund Mach, San Michele all'Adige). Climatic normals are
calculated, too (output of function climate
). The output
of function thornthwaite
is present in the data set
Trent_climate
, as input for function plot
.
Reference tables for aridity and continentality indices are provided as
lists, to rank the classifications on standard scales
(arid_ind_tables
and continental_ind_tables
,
respectively).
See a first application in Eccel et al., 2015 and an application more focused on viticultural indices in Eccel et al., 2016.
References
Allen, R.G., Walter, I.A., Elliott, R.L., Howell, T.A., Itenfisu, D., Jensen, M.E., and Snyder, R.L. (eds.), 2005: ASCE Standardized Reference Evapotranspiration Equation. 216 pp.
Amann, J., 1929: L'hygrothermie du climat, facteur determinant la repartition des especes atlantiques. Revue Bryol., 56:126-133.
Amerine, M.A., and Winkler, A.J., 1944: Composition and quality of musts and wines of California grapes. Hilgardia. 15(6): 493-673. xerothermique. Docum. pour les Cartes des Prod. Veget. Serie: Generalite, 1 (1953), pp. 1-49.
Conrad, V. 1946: Usual formulas of continentality and their limits of validity. Transactions, American Geophysical Union, Volume 27, Issue 5, p. 663-664
De Martonne E., 1925: Traite de Geographie Physique: 3 tomes, Paris.
Eccel, E., Cordano, E., Zottele, F., Toller, GB., 2015: ClimClass and ClimClassMap: two R- packages for climatic and agro-bioclimatic indices. An application to Trentino. XVIII National Congress of Agrometeorology, 9-11 June 2015, San Michele all'Adige all\'Adige, Book of Extended Abstract (available from Autors).
Eccel, E., Zollo, A.L., Mercogliano, P., Zorer, R., 2016: Simulations of quantitative shift in bio-climatic indices in the viticultural areas of Trentino (Italian Alps) by an open source R package. Computers and Electronics in Agriculture 127 (2016) 92-100.
Emberger, L., 1955: Une classification biogeographique des climats. Receuil des travaux des laboratoires de botanique, geologie et zoologie de la faculte des sciences de l'universite de Montpellier (Serie Botanique), Fascicule 7, 3-43.
Eynard, I. e Dal Masso, G., 1990: Viticoltura moderna. Manuale pratico. Hoepli Milano. 778 pp.
Fregoni, C., et Pezzutto, S., 2000: Principes et premieres approches de l'indice bioclimatique de qualite Fregoni, Progr.Agric.Vitic. 117: 390-396.
Gams, H., 1932: Die klimatische Begrenzung von Pflanzenarealen und die Verteilung der hygrischen Kontinentalitaet in den Alpen. Zeitschr. Ges. Erdkunde, Berlin.
Gladstones, J.S., 2004: Climate and Australian Viticulture. In 'Viticulture. Volume 1-Resources'. (Eds Dry PR, Coombe BG) pp. 90-118.
Huglin, M.P., 1978: Nouveau mode d'evaluation des possibilites heliothermiques d'un milieu viticole. Comptes Rendus de l'Academie de l'Agriculture de France. 64: 1117-1126.
Gorczynski, L., 1920: Sur le calcul du degre de continentalisme et son application dans la climatologie. Geografiska Annaler 2, 324-331
Hargreaves, G.H., and Samani, Z.A., 1985: Reference crop evapotranspiratin from temperature. Applied Engineering in Agriculture, 1(2):96-99
Lang, R., 1920: Verwitterung und Bodenbildung als Einfuehrung in die Bodenkunde. Schweizerbart Science Publishers, Stuttgart
Lebourgeoise, F., 2010: Cours de bioclimatologie a l'usage des forestiers. Departement SIAFEE, UFR Forets, Arbres et Milieux Naturels. ENGREF, Nancy Cedex.
Lieth, H., Berlekamp, J., Fuest, S., and Riediger, S.: Walter-Lieth: Climate Diagram World Atlas, CD-Series I of Climate and Biosphere, 1st edit.
Michalet, R., and Souchier, B., 1991: Une approche synthetique biopedoclimatique des montagnes mediterraneennes: l'exemple du Maroc septemptrional. Thesis, Univ. J. Fourier, Grenoble, 273 pp
Rivas-Martinez: http://www.globalbioclimatics.org/
Thornthwaite, C. W., 1948: An Approach toward a Rational Classification of Climate. Geographical Review, Vol. 38, No. 1(Jan.):55-94.
Thornthwaite, C. W., and Mather, J.R., 1955: The water balance. Publications in Climatology, Volume 8(1), Laboratory of Climatology
Thornthwaite, C. W., and Mather, J.R., 1957: Instructions and tables for computing potential evapotranspiration and the water balance. Publications in climatology, Volume 10(3), Laboratory of Climatology.
Tonietto, J., and Carbonneau, A., 2004: A multicriteria climatic classification system for grape-growing regions worldwide. Agricultural and Forest Meteorology. 124(1/2): 81-97.
Trewartha, G.T. and Lyle, H.H., 1980: An Introduction to Climate. MacGraw - Hill, 5th Ed. Appendix: Koeppen's Classification of Climates.
UNEP (United Nations Environment Programme), 1997: World atlas of desertification 2ED. UNEP, London