click.var {ClickClust} | R Documentation |
Variance-covariance matrix estimation
Description
Estimates the variance-covariance matrix for model parameter estimates.
Usage
click.var(X, y = NULL, alpha, beta = NULL, gamma, z)
Arguments
X |
dataset array (p x p x n) |
y |
vector of initial states (length n) |
alpha |
vector of mixing proportions (length K) |
beta |
matrix of initial state probabilities (K x p) |
gamma |
array of transition probabilities (p x p x K) |
z |
matrix of posterior probabilities (n x K) |
Details
Returns an estimated variance-covariance matrix for model parameter estimates.
Author(s)
Melnykov, V.
References
Melnykov, V. (2016) Model-Based Biclustering of Clickstream Data, Computational Statistics and Data Analysis, 93, 31-45.
Melnykov, V. (2016) ClickClust: An R Package for Model-Based Clustering of Categorical Sequences, Journal of Statistical Software, 74, 1-34.
See Also
click.EM
Examples
set.seed(123)
n.seq <- 200
p <- 5
K <- 2
mix.prop <- c(0.3, 0.7)
TP1 <- matrix(c(0.20, 0.10, 0.15, 0.15, 0.40,
0.20, 0.20, 0.20, 0.20, 0.20,
0.15, 0.10, 0.20, 0.20, 0.35,
0.15, 0.10, 0.20, 0.20, 0.35,
0.30, 0.30, 0.10, 0.10, 0.20), byrow = TRUE, ncol = p)
TP2 <- matrix(c(0.15, 0.15, 0.20, 0.20, 0.30,
0.20, 0.10, 0.30, 0.30, 0.10,
0.25, 0.20, 0.15, 0.15, 0.25,
0.25, 0.20, 0.15, 0.15, 0.25,
0.10, 0.30, 0.20, 0.20, 0.20), byrow = TRUE, ncol = p)
TP <- array(rep(NA, p * p * K), c(p, p, K))
TP[,,1] <- TP1
TP[,,2] <- TP2
# DATA SIMULATION
A <- click.sim(n = n.seq, int = c(10, 50), alpha = mix.prop, gamma = TP)
C <- click.read(A$S)
# EM ALGORITHM
M2 <- click.EM(X = C$X, y = C$y, K = 2)
# VARIANCE ESTIMATION
V <- click.var(X = C$X, y = C$y, alpha = M2$alpha, beta = M2$beta,
gamma = M2$gamma, z = M2$z)
# 95% confidence intervals for all model parameters
Estimate <- c(M2$alpha[-K], as.vector(t(M2$beta[,-p])),
as.vector(apply(M2$gamma[,-p,], 3, t)))
Lower <- Estimate - qnorm(0.975) * sqrt(diag(V))
Upper <- Estimate + qnorm(0.975) * sqrt(diag(V))
cbind(Estimate, Lower, Upper)
[Package ClickClust version 1.1.6 Index]