click.sim {ClickClust} | R Documentation |
Simulating sequences of visited states
Description
Simulates sequences of visited states.
Usage
click.sim(n, int = c(5, 100), alpha, beta = NULL, gamma)
Arguments
n |
number of sequences |
int |
interval defining the lower and upper bounds for the length of sequences |
alpha |
vector of mixing proportions (length K) |
beta |
matrix of initial state probabilities (K x p) |
gamma |
array of K p x p transition probability matrices (p x p x K) |
Details
Simulates 'n' sequences of visited states according to the following mixture model parameters: 'alpha' - mixing proportions, 'beta' - initial state probabilities, 'gamma' - transition probability matrices. If the matrix 'beta' is not provided, all initial states are assumed to be equal to 1 / p.
Value
S |
list of simulated sequences |
id |
true classification of simulated sequences |
Author(s)
Melnykov, V.
References
Melnykov, V. (2016) Model-Based Biclustering of Clickstream Data, Computational Statistics and Data Analysis, 93, 31-45.
Melnykov, V. (2016) ClickClust: An R Package for Model-Based Clustering of Categorical Sequences, Journal of Statistical Software, 74, 1-34.
See Also
click.read, click.EM
Examples
# SPECIFY MODEL PARAMETERS
set.seed(123)
n.seq <- 20
p <- 5
K <- 2
mix.prop <- c(0.3, 0.7)
TP1 <- matrix(c(0.20, 0.10, 0.15, 0.15, 0.40,
0.20, 0.20, 0.20, 0.20, 0.20,
0.15, 0.10, 0.20, 0.20, 0.35,
0.15, 0.10, 0.20, 0.20, 0.35,
0.30, 0.30, 0.10, 0.10, 0.20), byrow = TRUE, ncol = p)
TP2 <- matrix(c(0.15, 0.15, 0.20, 0.20, 0.30,
0.20, 0.10, 0.30, 0.30, 0.10,
0.25, 0.20, 0.15, 0.15, 0.25,
0.25, 0.20, 0.15, 0.15, 0.25,
0.10, 0.30, 0.20, 0.20, 0.20), byrow = TRUE, ncol = p)
TP <- array(rep(NA, p * p * K), c(p, p, K))
TP[,,1] <- TP1
TP[,,2] <- TP2
# DATA SIMULATION
A <- click.sim(n = n.seq, int = c(10, 50), alpha = mix.prop, gamma = TP)
A