ClickClust-package {ClickClust}R Documentation

Model-based clustering of categorical sequences

Description

The package runs finite mixture modeling and model-based clustering for categorical sequences

Details

Function 'click.EM' runs the EM algorithm for finite mixture models with Markov model components.

Author(s)

Volodymyr Melnykov

Maintainer: Volodymyr Melnykov <vmelnykov@cba.ua.edu>

References

Melnykov, V. (2016) Model-Based Biclustering of Clickstream Data, Computational Statistics and Data Analysis, 93, 31-45.

Melnykov, V. (2016) ClickClust: An R Package for Model-Based Clustering of Categorical Sequences, Journal of Statistical Software, 74, 1-34.

Examples



set.seed(123)

n.seq <- 50

p <- 5
K <- 2
mix.prop <- c(0.3, 0.7)


TP1 <- matrix(c(0.20, 0.10, 0.15, 0.15, 0.40,
                0.20, 0.20, 0.20, 0.20, 0.20,
                0.15, 0.10, 0.20, 0.20, 0.35,
                0.15, 0.10, 0.20, 0.20, 0.35,
                0.30, 0.30, 0.10, 0.10, 0.20), byrow = TRUE, ncol = p)

TP2 <- matrix(c(0.15, 0.15, 0.20, 0.20, 0.30,
                0.20, 0.10, 0.30, 0.30, 0.10,
                0.25, 0.20, 0.15, 0.15, 0.25,
                0.25, 0.20, 0.15, 0.15, 0.25,
                0.10, 0.30, 0.20, 0.20, 0.20), byrow = TRUE, ncol = p)


TP <- array(rep(NA, p * p * K), c(p, p, K))
TP[,,1] <- TP1
TP[,,2] <- TP2


# DATA SIMULATION

A <- click.sim(n = n.seq, int = c(10, 50), alpha = mix.prop, gamma = TP)
C <- click.read(A$S)


# EM ALGORITHM

click.EM(X = C$X, K = 2)



[Package ClickClust version 1.1.6 Index]