plot_rates_time {Claddis} | R Documentation |
Visualize a rate test time series
Description
Given the results from a rates test produces a time series visualization for a specific model.
Usage
plot_rates_time(test_rates_output, model_number, ...)
Arguments
test_rates_output |
Rate output from test_rates. |
model_number |
The number of the model you wish to visualise from the rate output. |
... |
Other options to be passed to geoscalePlot. |
Details
The raw output from test_rates can be difficult to interpret without visualization and this function provides a means for doing that when the desired output is a time series (other functions will be added for other types of rate test).
The function will only work for a single model, but in practice the user may wish to produce multiple plots in which case they simply need to rn the function multiple times or setup a multipanel window first with layout, or similar.
Plots use the geoscale package to add geologic time to the x-axis and interested users should consult the documentation tere for a full ist of options (passed via ...) in the function (see example below).
Calculated rates (changes per lineage million years) are plotted as filled circles and models are plotted as horizontal lines labelled by rate parameters (lambda_i).
Value
Nothing is returned, but a plot is produced.
Author(s)
Graeme T. Lloyd graemetlloyd@gmail.com
Examples
# Make time-scaled first MPT for Day 2016 data set:
time_tree <- ape::read.tree(text = paste0("(Biarmosuchus_tener:0.5,",
"(((Hipposaurus_boonstrai:3.5,(Bullacephalus_jacksoni:0.75,",
"Pachydectes_elsi:0.75):0.75):0.75,(Lemurosaurus_pricei:7.166666667,",
"(Lobalopex_mordax:4.333333333,((Lophorhinus_willodenensis:3.666666667,",
"(Proburnetia_viatkensis:0.8333333333,(Lende_chiweta:2,",
"(Paraburnetia_sneeubergensis:1,Burnetia_mirabilis:2):1):1.833333333)",
":0.8333333333):0.8333333333,(BP_1_7098:2.25,Niuksenitia_sukhonensis:",
"1.25):1.25):0.8333333333):0.8333333333):3.083333333):1.95,",
"(Ictidorhinus_martinsi:15.9,(RC_20:11.6,(Herpetoskylax_hopsoni:11.3,",
"Lycaenodon_longiceps:0.3):0.3):0.3):0.3):0.3);"))
# Add root age to tree:
time_tree$root.time <- 269.5
# Prune continuous block from day 2016:
cladistic_matrix <- prune_cladistic_matrix(
cladistic_matrix = day_2016,
blocks2prune = 1
)
# Run test rates function for each time bin partition:
test_rates_output <- test_rates(
time_tree = time_tree,
cladistic_matrix = cladistic_matrix,
time_partitions = partition_time_bins(n_time_bins = 9),
time_bins = seq(from = 270, to = 252, length.out = 10)
)
# Plot 97th time bin partition model:
plot_rates_time(
test_rates_output = test_rates_output,
model_number = 97, units = "Stage", cex.ts = 1, cex.age = 1,
abbrev = "Stage"
)