dcddm {CircularDDM} | R Documentation |
The Circular Drift-diffusion Distribution
Description
Density function and random generation for the circular drift-diffusion
model with theta vector equal to pVec
. dcddm
is the
equation (23) on page 433 in Smith (2016).
Usage
dcddm(x, pVec, k = 141L)
rcddm(n, pVec, p = 0.15)
Arguments
x |
a matrix storing a first column as RT and a second column of continuous responses/reports/outcomes. Each row is a trial. |
pVec |
a parameter vector with the order [a, vx, vy, t0, s], or [thresh, mu1, mu2, ndt, sigmasq]. The order matters. |
k |
a precision for calculating the infinite series in |
n |
number of observations. |
p |
a precision for random walk step in |
Value
dcddm
gives a log-likelihood vector. rddm
generates
random deviates, returning a n x 3 matrix with the columns: RTs, choices
and then angles.
References
Smith, P. L. (2016). Diffusion Theory of Decision Making in Continuous Report, Psychological Review, 123 (4), 425–451.
Examples
## dcddm example
x <- cbind(
RT= c(1.2595272, 0.8693937, 0.8009044, 1.0018933, 2.3640007, 1.0521304),
R = c(1.9217430, 1.7844653, 0.2662521, 2.1569724, 1.7277440, 0.8607271)
)
pVec <- c(a=2.45, vx=1.5, vy=1.25, t0=.1, s=1)
dcddm(x, pVec)
## rcddm example
pVec <- c(a=2, vx=1.5, vy=1.25, t0=.25, s=1)
den <- rcddm(1e3, pVec);
hist(den[,1], breaks = "fd", xlab="Response Time", main="Density")
hist(den[,3], breaks = "fd", xlab="Response Angle", main="Density")