WrapSpTi {CircSpaceTime} | R Documentation |
Samples from the posterior distribution of the Wrapped Normal spatial temporal model
Description
The WrapSpTi
function returns samples from the posterior distribution of the spatio-temporal Wrapped Gaussian Model
Usage
WrapSpTi(x = x, coords = coords, times, start = list(alpha = c(2, 1),
rho_sp = c(0.1, 0.5), rho_t = c(0.1, 1), sep_par = c(0.01, 0.1), k =
sample(0, length(x), replace = T)), priors = list(alpha = c(pi, 1, -10,
10), rho_sp = c(8, 14), rho_t = c(1, 2), sep_par = c(0.001, 1), sigma2 =
c()), sd_prop = list(rho_sp = 0.5, rho_t = 0.5, sep_par = 0.5, sigma2 =
0.5), iter = 1000, BurninThin = c(burnin = 20, thin = 10),
accept_ratio = 0.234, adapt_param = c(start = 1, end = 1e+07, exp =
0.9), n_chains = 1, parallel = FALSE, n_cores = 1)
Arguments
x |
a vector of n circular data in |
coords |
an nx2 matrix with the sites coordinates |
times |
an n vector with the times of the observations x |
start |
a list of 4 elements giving initial values for the model parameters. Each elements is a vector with
|
priors |
a list of 5 elements to define priors for the model parameters:
|
sd_prop |
list of 3 elements. To run the MCMC for the rho_sp and sigma2 parameters we use an adaptive metropolis and in sd_prop we build a list of initial guesses for these two parameters and the beta parameter |
iter |
iter number of iterations |
BurninThin |
a vector of 2 elements with the burnin and the chain thinning |
accept_ratio |
it is the desired acceptance ratio in the adaptive metropolis |
adapt_param |
a vector of 3 elements giving the iteration number at which the adaptation must start and end. The third element (exp) must be a number in (0,1) and it is a parameter ruling the speed of changes in the adaptation algorithm, it is recommended to set it close to 1, if it is too small non positive definite matrices may be generated and the program crashes. |
n_chains |
integer, the number of chains to be launched (default is 1, but we recommend to use at least 2 for model diagnostic) |
parallel |
logical, if the multiple chains must be lunched in parallel (you should install doParallel package). Default is FALSE |
n_cores |
integer, required if parallel=TRUE, the number of cores to be used in the implementation. Default value is 1. |
Value
it returns a list of n_chains
lists each with elements
alpha
,rho_sp
,rho_t
,sep_par
,sigma2
vectors with the thinned chains
k
a matrix with
nrow = length(x)
andncol =
the length of thinned chainsdistribution
characters, always "WrapSpTi"
Implementation Tips
To facilitate the estimations, the observations x are centered around pi, and the prior and starting value of alpha are changed accordingly. After the estimations, posterior samples of alpha are changed back to the original scale
References
G. Mastrantonio, G. Jona Lasinio, A. E. Gelfand, "Spatio-temporal circular models with non-separable covariance structure", TEST 25 (2016), 331–350.
T. Gneiting, "Nonseparable, Stationary Covariance Functions for Space-Time Data", JASA 97 (2002), 590-600
See Also
WrapKrigSpTi
for spatio-temporal prediction,
ProjSpTi
to sample from the posterior distribution of the spatio-temporal
Projected Normal model and ProjKrigSpTi
for spatio-temporal prediction under the same model
Other spatio-temporal models: ProjSpTi
Examples
library(CircSpaceTime)
## functions
rmnorm <- function(n = 1, mean = rep(0, d), varcov){
d <- if (is.matrix(varcov))
ncol(varcov)
else 1
z <- matrix(rnorm(n * d), n, d) %*% chol(varcov)
y <- t(mean + t(z))
return(y)
}
######################################
## Simulation ##
######################################
set.seed(1)
n <- 20
### simulate coordinates from a unifrom distribution
coords <- cbind(runif(n,0,100), runif(n,0,100)) #spatial coordinates
coordsT <- sort(runif(n,0,100)) #time coordinates (ordered)
Dist <- as.matrix(dist(coords))
DistT <- as.matrix(dist(coordsT))
rho <- 0.05 #spatial decay
rhoT <- 0.01 #temporal decay
sep_par <- 0.5 #separability parameter
sigma2 <- 0.3 # variance of the process
alpha <- c(0.5)
#Gneiting covariance
SIGMA <- sigma2 * (rhoT * DistT^2 + 1)^(-1) * exp(-rho * Dist/(rhoT * DistT^2 + 1)^(sep_par/2))
Y <- rmnorm(1,rep(alpha, times = n), SIGMA) #generate the linear variable
theta <- c()
## wrapping step
for(i in 1:n) {
theta[i] <- Y[i] %% (2*pi)
}
### Add plots of the simulated data
rose_diag(theta)
## use this values as references for the definition of initial values and priors
rho_sp.min <- 3/max(Dist)
rho_sp.max <- rho_sp.min+0.5
rho_t.min <- 3/max(DistT)
rho_t.max <- rho_t.min+0.5
val <- sample(1:n,round(n*0.2)) #validation set
set.seed(100)
mod <- WrapSpTi(
x = theta[-val],
coords = coords[-val,],
times = coordsT[-val],
start = list("alpha" = c(.79, .74),
"rho_sp" = c(.33,.52),
"rho_t" = c(.19, .43),
"sigma2" = c(.49, .37),
"sep_par" = c(.47, .56),
"k" = sample(0,length(theta[-val]), replace = TRUE)),
priors = list("rho_sp" = c(0.01,3/4), ### uniform prior on this interval
"rho_t" = c(0.01,3/4), ### uniform prior on this interval
"sep_par" = c(1,1), ### beta prior
"sigma2" = c(5,5),## inverse gamma prior with mode=5/6
"alpha" = c(0,20) ## wrapped gaussian with large variance
) ,
sd_prop = list( "sigma2" = 0.1, "rho_sp" = 0.1, "rho_t" = 0.1,"sep_par"= 0.1),
iter = 7000,
BurninThin = c(burnin = 3000, thin = 10),
accept_ratio = 0.234,
adapt_param = c(start = 1, end = 1000, exp = 0.5),
n_chains = 2 ,
parallel = FALSE,
n_cores = 1
)
check <- ConvCheck(mod,startit = 1 ,thin = 1)
check$Rhat ## convergence has been reached
## when plotting chains remember that alpha is a circular variable
par(mfrow = c(3,2))
coda::traceplot(check$mcmc)
par(mfrow = c(1,1))
#### move to the prediction step with WrapKrigSpTi