APEcirc {CircSpaceTime} R Documentation

## Average Prediction Error for circular Variables.

### Description

APEcirc computes the average prediction error (APE), defined as the average circular distance across pairs

### Usage

APEcirc(real, sim, bycol = F)


### Arguments

 real a vector of the values of the process at the test locations sim a matrix with nrow = the test locations and ncol = the number of posterior samples from the posterior distributions by WrapKrigSp WrapKrigSpTi, ProjKrigSp, ProjKrigSpTi bycol logical. It is TRUE if the columns of sim represent the observations and the rows the posterior samples, the default value is FALSE.

### Value

a list of two elements

ApePoints

a vector of APE, one element for each test point

Ape

the overall mean

### References

G. Jona Lasinio, A. Gelfand, M. Jona-Lasinio, "Spatial analysis of wave direction data using wrapped Gaussian processes", The Annals of Applied Statistics 6 (2013), 1478-1498

ProjKrigSp and WrapKrigSp for posterior spatial estimations, ProjKrigSpTi and WrapKrigSpTi for posterior spatio-temporal estimations

Other model performance indices: CRPScirc

### Examples


library(CircSpaceTime)
## functions
rmnorm <- function(n = 1, mean = rep(0, d), varcov){
d <- if (is.matrix(varcov))
ncol(varcov)
else 1
z <- matrix(rnorm(n * d), n, d) %*% chol(varcov)
y <- t(mean + t(z))
return(y)
}

######################################
## Simulation                       ##
######################################
set.seed(1)
n <- 20
### simulate coordinates from a unifrom distribution
coords  <- cbind(runif(n,0,100), runif(n,0,100)) #spatial coordinates
coordsT <- sort(runif(n,0,100)) #time coordinates (ordered)
Dist <- as.matrix(dist(coords))
DistT <- as.matrix(dist(coordsT))

rho     <- 0.05 #spatial decay
rhoT    <- 0.01 #temporal decay
sep_par <- 0.5 #separability parameter
sigma2  <- 0.3 # variance of the process
alpha   <- c(0.5)
#Gneiting covariance
SIGMA <- sigma2 * (rhoT * DistT^2 + 1)^(-1) * exp(-rho * Dist/(rhoT * DistT^2 + 1)^(sep_par/2))

Y <- rmnorm(1,rep(alpha, times = n), SIGMA) #generate the linear variable
theta <- c()
## wrapping step
for(i in 1:n) {
theta[i] <- Y[i] %% (2*pi)
}
### Add plots of the simulated data

rose_diag(theta)
## use this values as references for the definition of initial values and priors
rho_sp.min <- 3/max(Dist)
rho_sp.max <- rho_sp.min+0.5
rho_t.min  <- 3/max(DistT)
rho_t.max  <- rho_t.min+0.5
val <- sample(1:n,round(n*0.2)) #validation set
set.seed(100)
mod <- WrapSpTi(
x       = theta[-val],
coords    = coords[-val,],
times    = coordsT[-val],
start   = list("alpha"      = c(.79, .74),
"rho_sp"     = c(.33,.52),
"rho_t"     = c(.19, .43),
"sigma2"    = c(.49, .37),
"sep_par"  = c(.47, .56),
"k"       = sample(0,length(theta[-val]), replace = TRUE)),
priors   = list("rho_sp"      = c(0.01,3/4), ### uniform prior on this interval
"rho_t"      = c(0.01,3/4), ### uniform prior on this interval
"sep_par"  = c(1,1), ### beta prior
"sigma2"    = c(5,5),## inverse gamma prior with mode=5/6
"alpha" =  c(0,20) ## wrapped gaussian with large variance
)  ,
sd_prop   = list( "sigma2" = 0.1,  "rho_sp" = 0.1,  "rho_t" = 0.1,"sep_par"= 0.1),
iter    = 7000,
BurninThin    = c(burnin = 3000, thin = 10),
accept_ratio = 0.234,
adapt_param = c(start = 1, end = 1000, exp = 0.5),
n_chains = 2 ,
parallel = FALSE,
n_cores = 1
)
check <- ConvCheck(mod,startit = 1 ,thin = 1)
check$Rhat ## convergence has been reached ## when plotting chains remember that alpha is a circular variable par(mfrow = c(3,2)) coda::traceplot(check$mcmc)
par(mfrow = c(1,1))

############## Prediction on the validation set
Krig <- WrapKrigSpTi(
WrapSpTi_out = mod,
coords_obs =  coords[-val,],
coords_nobs =  coords[val,],
times_obs =  coordsT[-val],
times_nobs =  coordsT[val],
x_obs = theta[-val]
)
### checking the prediction
Wrap_Ape <- APEcirc(theta[val], Krig\$Prev_out)


[Package CircSpaceTime version 0.9.0 Index]