MCe {CircOutlier} | R Documentation |
Detection of Outliers in Circular-circular Regression
Description
Removal of the ith observation from the data set calculate mean circular error for reduced data set
Usage
MCe(u)
Arguments
u |
cosine the difference between the observed value of the response variable y and fitted values Y on model |
Details
This function after removal of the ith observation from the data set.
Value
Number, that is mean circular error after removal of the ith observation from the data set.
Author(s)
Azade Ghazanfarihesari, Majid Sarmad
References
A. H. Abuzaid, A. G. Hussin & I. B. Mohamed (2013) Detection of outliers in simple circular regression models using the mean circular error statistics
See Also
circular, CircStats
Examples
# Generate a data set dependent of circular variables.
library(CircStats)
x <- rvm(n = 50, 0, 2)
y <- rvm(n = 50, pi/4, 5)
# Fit a circular-circular regression model.
circ.lm <- circ.reg(x, y, order = 1)
Y <- circ.lm$fitted
MCe(cos(y - Y))
[Package CircOutlier version 3.2.3 Index]