MCE {CircOutlier} | R Documentation |
Detection of Outliers in Circular-Circular Regression
Description
Mean circular error
Usage
MCE(y,Y,n)
Arguments
y |
observed values of the response variable are calculated based on model
having a VonMises distribution with circular mean 0 and concentration parameter k. |
Y |
the estimeted value of y under model |
n |
the sample size |
Details
This function may be considered as a type of arithmetic mean which is not robust to the existence of outlier.thus it can be used to detect the possible outliers in the circular regression.
Value
Number, that is mean circular error.
Author(s)
Azade Ghazanfarihesari, Majid Sarmad
References
A. H. Abuzaid, A. G. Hussin & I. B. Mohamed (2013) Detection of outliers in simple circular regression models using the mean circular error statistics.
See Also
circular, CircStats
Examples
#Generate a data set dependent of circular variables.
library(CircStats)
n <- 50
x <- rvm(n = 50, 0, 2)
y <- rvm(n = 50, pi/4, 5)
# Fit a circular-circular regression model.
circ.lm <- circ.reg(x, y, order = 1)
Y <- circ.lm$fitted
MCE(y, Y, n)