CircNNTSRmult-package {CircNNTSRmult}R Documentation

Multivariate Circular Data using MNNTS Models

Description

A collection of utilities for the statistical analysis of multivariate circular data using distributions based on Multivariate Nonnegative Trigonometric Sums (MNNTS). The package includes functions for calculation of densities and distributions, for the estimation of parameters, and more.

Details

Package: CircNNTSRmult
Type: Package
Version: 0.1.0
Date: 2023-09-09
License: GLP (>=2)
Depends: R (>= 3.5.0), stats, psychTools, CircNNTSR
LazyLoad: yes
NeedsCompilation: no

The MNNTS (multivariate NNTS) density on a d-dimensional (d>2d>2) hypertorus by Fernandez-Duran and Gregorio-Dominguez (2014) (see also Fernandez-Duran and Gregorio-Dominguez, 2016) for a vector of angles, Θ=(Θ1,Θ2,,Θd)\underline{\Theta}=(\Theta_1,\Theta_2, \ldots, \Theta_d)^\top, is defined as

fΘ(θ)=1(2π)dc12dHeeHc12d f_{\underline{\Theta}}(\underline{\theta}) = \frac{1}{(2\pi)^d}\underline{c}_{12 \cdots d}^H\underline{e}\underline{e}^H\underline{c}_{12 \cdots d}

=1(2π)dk1=0M1k2=0M2kd=0Mdm1=0M1m2=0M2md=0Mdck1k2kdcˉk1k2kder=1di(krmr)θr = \frac{1}{(2\pi)^d}\sum_{k_1=0}^{M_1}\sum_{k_2=0}^{M_2} \cdots \sum_{k_d=0}^{M_d}\sum_{m_1=0}^{M_1}\sum_{m_2=0}^{M_2} \cdots \sum_{m_d=0}^{M_d} c_{k_1 k_2 \cdots k_d}\bar{c}_{k_1 k_2 \cdots k_d}e^{\sum_{r=1}^d i(k_r-m_r)\theta_r} \nonumber \\

where c12d\underline{c}_{12 \cdots d} is a dd-dimensional parameter vector of complex numbers of dimension 2r=1d(Mr+1)12\prod_{r=1}^{d}(M_r+1) - 1 with subindexes given for all the combinations (Kronecker products) of the dd vectors Mr=(0,1,,Mr)\underline{M}_r=(0,1, \ldots, M_r)^\top for r=1,2,,dr=1,2, \ldots, d where MrM_r is the number of terms of the sum in the equation for the rr-th component of the vector Θ\underline{\Theta}. The vector c12d\underline{c}_{12 \cdots d} must satisfy c12dHc12d=c12d2=k1=0M1k2=0M2kd=0Mdck1k2kd2=1\underline{c}_{12 \cdots d}^H\underline{c}_{12 \cdots d}=||\underline{c}_{12 \cdots d}||^2=\sum_{k_1=0}^{M_1}\sum_{k_2=0}^{M_2} \cdots \sum_{k_d=0}^{M_d} ||c_{k_1k_2 \cdots k_d}||^2=1. For identifiabily, c000c_{00 \cdots 0} is a nonnegative real number. The vector c12dH\underline{c}_{12 \cdots d}^H is the Hermitian (conjugate and transpose) of vector c12d\underline{c}_{12 \cdots d}. The MNNTS family has many desirable properties, the marginal and conditional densities of any order of an MNNTS density are also MNNTS densities and, independence among the elements of the vector Θ\underline{\Theta} is translated into a Kronecker product decomposition in the parameter vector c12d\underline{c}_{12 \cdots d}. For example, in the trivariate case Θ=(Θ1,Θ2,Θ3)\underline{\Theta}=(\Theta_1, \Theta_2, \Theta_3)^\top, if Θ1\Theta_1, Θ2\Theta_2 and Θ3\Theta_3 are joint independent then, c123=c1c2c3\underline{c}_{123}=\underline{c}_{1} \bigotimes \underline{c}_{2} \bigotimes \underline{c}_{3} where c1\underline{c}_1, c2\underline{c}_2 and c3\underline{c}_3 are the parameter vectors of the NNTS marginal densities of Θ1\Theta_1, Θ2\Theta_2 and Θ3\Theta_3, respectively. Similarly, if Θ1\Theta_1 is groupwise independent of (Θ2,Θ3)(\Theta_2,\Theta_3)^\top then, c123=c1c23\underline{c}_{123}=\underline{c}_{1} \bigotimes \underline{c}_{23} where c23\underline{c}_{23} is the parameter vector of the bivariate MNNTS density of (Θ2,Θ3)(\Theta_2,\Theta_3)^\top. These results apply to higher dimensions.

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

Maintainer: Maria Mercedes Gregorio Dominguez <mercedes@itam.mx>

References

Fernandez-Duran, J. J. and Gregorio-Dominguez M. M. (2014) Modeling angles in proteins and circular genomes using multivariate angular distributions based on nonnegative trigonometric sums. Statistical Applications in Genetics and Molecular Biology, 13(1), 1-18.

Fernandez-Duran, J. J. and Gregorio-Dominguez, M. M. (2016). CircNNTSR: an R package for the statistical analysis of circular, multivariate circular, and spherical data using nonnegative trigonometric sums. Journal of Statistical Software, 70, 1–19.

Fernandez-Duran, J. J. and Gregorio-Dominguez, M. M (2023). Multivariate Nonnegative Trigonometric Sums Distributions for High-Dimensional Multivariate Circular Data, arXiv preprint arXiv:2301.03643v2


[Package CircNNTSRmult version 0.1.0 Index]