snntsmanifoldnewtonestimation {CircNNTSR} | R Documentation |
Parameter estimation for SNNTS distributions for spherical data
Description
Computes the maximum likelihood estimates of the SNNTS model parameters using a Newton algorithm on the hypersphere
Usage
snntsmanifoldnewtonestimation(data, M = c(0,0), iter = 1000,
initialpoint = FALSE, cinitial)
Arguments
data |
Matrix of angles in radians, with one row for each data point. The first column contains longitude data (between zero and 2*pi), and second column contains latitude data (between zero and pi), with one row for each data point |
M |
Vector with number of components in the SNNTS for each dimension |
iter |
Number of iterations |
initialpoint |
TRUE if an initial point for the optimization algorithm will be used |
cinitial |
Initial value for cpars for the optimization algorithm, avector of complex numbers of dimension prod(M+1). The first element is a real and positive number. The sum of the squared moduli of the c parameters must be equal to one. |
Value
cestimates |
Matrix of prod(M+1)*(3). The first two columns are the parameter numbers, and the last column is the c parameter's estimators |
loglik |
Optimum log-likelihood value |
AIC |
Value of Akaike's Information Criterion |
BIC |
Value of Bayesian Information Criterion |
gradnormerror |
Gradient error after the last iteration |
Note
The parameters cinitial and cestimates used by this function are the transformed parameters of the SNNTS density function, which lie on the surface of the unit hypersphere
Author(s)
Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez
References
Fernandez-Duran J. J. y Gregorio Dominguez, M. M. (2008) Spherical Distributions Based on Nonnegative Trigonometric Sums, Working Paper, Statistics Department, ITAM, DE-C08.6
Examples
set.seed(200)
data(Datab6fisher_ready)
data<-Datab6fisher_ready
M<-c(4,4)
cpar<-rnorm(prod(M+1))+rnorm(prod(M+1))*complex(real=0,imaginary=1)
cpar[1]<-Re(cpar[1])
cpar<- cpar/sqrt(sum(Mod(cpar)^2))
cest<-snntsmanifoldnewtonestimation(data,c(4,4),100,TRUE,cpar)
cest
cest<-snntsmanifoldnewtonestimation(data,c(1,2),100)
cest