nntsmanifoldnewtonestimationgradientstop {CircNNTSR} | R Documentation |
Maximum likelihood estimates of the NNTS parameters
Description
Computes the maximum likelihood estimates of the NNTS parameters, using a Newton algorithm on the hypersphere with the option to specify a minimum value of the norm of the gradient error to stop the algorithm
Usage
nntsmanifoldnewtonestimationgradientstop(data, M = 0, iter = 1000, initialpoint = FALSE,
cinitial,gradientstop=1e-10)
Arguments
data |
Vector of angles in radians |
M |
Number of components in the NNTS |
iter |
Number of iterations |
initialpoint |
TRUE if an initial point for the optimization algorithm will be used |
cinitial |
Vector of size M+1. The first element is real and the next M elements are complex (values for |
gradientstop |
The value of the norm of the gradient error of the Newton algorithm at which the algorithms stops |
Value
cestimates |
Matrix of (M+1)x2. The first column is the parameter numbers, and the second column is the c parameter???s estimators |
loglik |
Optimum log-likelihood value |
AIC |
Value of Akaike???s Information Criterion |
BIC |
Value of Bayesian Information Criterion |
gradnormerror |
Gradient error after the last iteration |
Author(s)
Juan Jose Fernandez-Duran y Maria Mercedes Gregorio-Dominguez
References
Fernandez-Duran, J.J., Gregorio-Dominguez, M.M. (2010). Maximum Likelihood Estimation of Nonnegative Trigonometric Sums Models by Using a Newton-like Algorithm on Manifolds, Working Paper, Department of Statistics, ITAM, DE-C10.8
Examples
set.seed(200)
a<-c(runif(10,3*pi/2,2*pi-0.00000001),runif(10,pi/2,pi-0.00000001))
#Estimation of the NNTSdensity with 2 components for data and gradientstop at 1e-12
nntsmanifoldnewtonestimationgradientstop(a,2,gradientstop=1e-12)
data(Turtles_radians)
#Empirical analysis of data
Turtles_hist<-hist(Turtles_radians,breaks=10,freq=FALSE)
#Estimation of the NNTS density with 3 componentes for data and gradientstop at 1e-12
nntsmanifoldnewtonestimationgradientstop(Turtles_radians,3,gradientstop=1e-12)