mnntsmanifoldnewtonestimation {CircNNTSR} | R Documentation |
Parameter estimation for the MNNTS distributions
Description
Computes the maximum likelihood estimates of the MNNTS parameters using a Newton algorithm on the hypersphere
Usage
mnntsmanifoldnewtonestimation(data,M=0,R=1,iter=1000,initialpoint=FALSE,cinitial)
Arguments
data |
Matrix of angles in radians, a column for each dimension, a row for each data point |
M |
Vector of length R with number of components in the MNNTS for each dimension |
R |
Number of dimensions |
iter |
Number of iterations for the Newton algorithm |
initialpoint |
TRUE if an initial point for the optimization algorithm will be used |
cinitial |
Initial value for cpars (parameters of the model) for the optimization algorithm.
Vector of complex numbers of dimension prod(M+1). The first element is a real and positive number.
The first M[1]+1 elements correspond to dimension one, the next M[2]+1 elements correspond to dimension two, and so on.
The sum of the SQUARED moduli of the c parameters must be equal to |
Value
cestimates |
Matrix of prod(M+1)*(R+1). The first R columns are the parameter number, and the last column is the c parameter's estimators |
loglik |
Optimum log-likelihood value |
AIC |
Value of Akaike's Information Criterion |
BIC |
Value of Bayesian Information Criterion |
gradnormerror |
Gradient error after the last iteration |
Author(s)
Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez
References
Fernandez-Duran, J.J. and Gregorio-Dominguez, M.M. (2009) Multivariate Angular Distributions Based on Multiple Nonnegative Trigonometric Sums, Working Paper, Statistics Department, ITAM, DE-C09.1
Fernandez-Duran, J.J., Gregorio-Dominguez, M.M. (2014). Modeling Angles in Proteins and Circular Genomes Using Multivariate Angular Distributions Based on Nonnegative Trigonometric Sums. Statistical Applications in Genetics and Molecular Biology, 13(1), 1-18. doi:10.1515/sagmb-2012-0012
Examples
set.seed(200)
M<-c(2,3)
R<-length(M)
data(Nest)
data<-Nest*(pi/180)
est<-mnntsmanifoldnewtonestimation(data,M,R,100)
est