dcor.circular {CircMLE} | R Documentation |
circular distance correlation function
Description
Perform a distance correlation between circular datasets or between circular and linear datasets.
Usage
dcor.circular(x, y, method = "chord", type = "c-c", ...)
Arguments
x |
A vector of class 'circular', or numeric vector of angles measured in radians |
y |
A vector of class 'circular', numeric vector of angles measured in radians, or numeric vector |
method |
the distance measure to be used. This must be one of the following functions: ‘"angularseparation"’, ‘"chord"’, '"geodesic"’, or '"circ.range"' (default = "chord"). see ?dist.circular for additional details. |
type |
if ‘type == "c-c"’ then perform a circular-circular distance corellation, else if ‘type == "c-l"’ then perform a circular-linear distance corellation (default = "c-c"). |
... |
additional parameters passed to the dcor.test function |
Value
Same as from the dcor.test
function:
a list with class ‘htest’containing
method: description of test
statistic: observed value of the test statistic
estimate: dCov(x,y) or dCor(x,y)
estimates: a vector: [dCov(x,y), dCor(x,y), dVar(x), dVar(y)]
replicates: replicates of the test statistic
p.value: approximate p-value of the test
n: sample size
data.name: description of data
See Also
dcor
dcov
DCOR
dcor.test
dist.circular
Examples
# Circular-circular distance corellation
x <- circular::rvonmises(n = 50, mu = circular::circular(0), kappa = 3)
y <- x + circular::rvonmises(n = 50, mu = circular::circular(pi), kappa = 10)
dcor.circular(x, y)
# Run permutation test with 9999 iterations
dcor.circular(x, y, R = 9999)
# Circular-linear distance corellation
x <- circular::rvonmises(n = 50, mu = circular::circular(0), kappa = 3)
y <- as.numeric(x) + rnorm(50, mean = 5, sd = 2)
dcor.circular(x, y, type = "c-l", R = 9999)