rCholWishart {CholWishart} | R Documentation |
Cholesky Factor of Random Wishart Distributed Matrices
Description
Generate n random matrices, distributed according
to the Cholesky factorization of a Wishart distribution with
parameters Sigma
and df
, W_p(Sigma, df)
(known as the Bartlett decomposition
in the context of Wishart random matrices).
Usage
rCholWishart(n, df, Sigma)
Arguments
n |
integer sample size. |
df |
numeric parameter, "degrees of freedom". |
Sigma |
positive definite |
Value
a numeric array, say R
, of dimension
p \times p \times n
,
where each R[,,i]
is a Cholesky decomposition of a sample
from the Wishart distribution W_p(Sigma, df)
. Based on a
modification of the existing code for the rWishart
function.
References
Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis (3rd ed.). Hoboken, N. J.: Wiley Interscience.
Mardia, K. V., J. T. Kent, and J. M. Bibby (1979) Multivariate Analysis, London: Academic Press.
A. K. Gupta and D. K. Nagar 1999. Matrix variate distributions. Chapman and Hall.
See Also
Examples
# How it is parameterized:
set.seed(20180211)
A <- rCholWishart(1L, 10, 3 * diag(5L))[, , 1]
A
set.seed(20180211)
B <- rInvCholWishart(1L, 10, 1 / 3 * diag(5L))[, , 1]
B
crossprod(A) %*% crossprod(B)
set.seed(20180211)
C <- chol(stats::rWishart(1L, 10, 3 * diag(5L))[, , 1])
C