vcov.clark {ChainLadder} | R Documentation |
Covariance Matrix of Parameter Estimates – Clark's methods
Description
Function to compute the covariance matrix of the parameter estimates for the ClarkLDF and ClarkCapeCod methods.
Usage
## S3 method for class 'clark'
vcov(object, ...)
Arguments
object |
object resulting from a run of the ClarkLDF or ClarkCapeCod functions. |
... |
not used. |
Details
The covariance matrix of the estimated parameters is estimated
by the inverse of the Information matrix (see Clark, p. 53).
This function uses the "FI" and "sigma2" values returned by
ClarkLDF and by ClarkCapeCod and calculates the matrix
-sigma2*FI^-1.
Author(s)
Daniel Murphy
References
Clark, David R., "LDF Curve-Fitting and Stochastic Reserving: A Maximum Likelihood Approach", Casualty Actuarial Society Forum, Fall, 2003
See Also
Examples
x <- GenIns
colnames(x) <- 12*as.numeric(colnames(x))
Y <- ClarkCapeCod(x, Premium=10000000+400000*0:9, maxage=240)
round(vcov(Y),6) ## Compare to matrix on p. 69 of Clark's paper
# The estimates of the loglogistic parameters
Y$THETAG
# The standard errors of the estimated parameters
sqrt(tail(diag(vcov(Y)), 2))
# The parameter risks of the estimated reserves are calculated
# according to the formula on p. 54 of Clark's paper. For example, for
# the 5th accident year, pre- and post-multiply the covariance matrix
# by a matrix consisting of the gradient entries for just that accident year
FVgrad5 <- matrix(Y$FutureValueGradient[, 5], ncol=1)
sqrt(t(FVgrad5) %*% vcov(Y) %*% FVgrad5) ## compares to 314,829 in Clark's paper
# The estimated reserves for accident year 5:
Y$FutureValue[5] ## compares to 2,046,646 in the paper
# Recalculate the parameter risk CV for all accident years in total (10.6% in paper):
sqrt(sum(t(Y$FutureValueGradient) %*% vcov(Y) %*% Y$FutureValueGradient)) /
Y$Total$FutureValue
[Package ChainLadder version 0.2.19 Index]