rMSN {CensMFM} | R Documentation |
Generating from Multivariate Skew-normal and Normal Random Distributions.
Description
It generates random realizations from a multivariate Skew-normal and Normal distribution.
Usage
rMSN(n, mu, Sigma, shape)
Arguments
n |
number of observations. |
mu |
a numeric vector of length |
Sigma |
a numeric positive definite matrix with dimension |
shape |
a numeric vector of length |
Value
It returns a n
x p
matrix containing the generated random realizations.
Author(s)
Francisco H. C. de Alencar hildemardealencar@gmail.com, Christian E. Galarza cgalarza88@gmail.com, Victor Hugo Lachos hlachos@uconn.edu and Larissa A. Matos larissam@ime.unicamp.br
Maintainer: Francisco H. C. de Alencar hildemardealencar@gmail.com
References
Cabral, C. R. B., Lachos, V. H., & Prates, M. O. (2012). Multivariate mixture modeling using skew-normal independent distributions. Computational Statistics & Data Analysis, 56(1), 126-142.
Prates, M. O., Lachos, V. H., & Cabral, C. (2013). mixsmsn: Fitting finite mixture of scale mixture of skew-normal distributions. Journal of Statistical Software, 54(12), 1-20.
C.E. Galarza, L.A. Matos, D.K. Dey & V.H. Lachos. (2019) On Moments of Folded and Truncated Multivariate Extended Skew-Normal Distributions. Technical report. ID 19-14. University of Connecticut.
F.H.C. de Alencar, C.E. Galarza, L.A. Matos & V.H. Lachos. (2019) Finite Mixture Modeling of Censored and Missing Data Using the Multivariate Skew-Normal Distribution. echnical report. ID 19-31. University of Connecticut.
See Also
fit.FMMSNC
, rMMSN
and rMMSN.contour
Examples
mu <- c(-3,-4)
Sigma <- matrix(c(3,1,1,4.5), 2,2)
shape <- c(-3,2)
rMSN(10,mu = mu,Sigma = Sigma,shape = shape)