CensMFM-package {CensMFM}R Documentation

Finite Mixture of Multivariate Censored/Missing Data

Description

It fits finite mixture models for censored or/and missing data using several multivariate distributions. Point estimation and asymptotic inference (via empirical information matrix) are offered as well as censored data generation. Pairwise scatter and contour plots can be generated. Possible multivariate distributions are the well-known normal, Student-t and skew-normal distributions. This package is an complement of Lachos, V. H., Moreno, E. J. L., Chen, K. & Cabral, C. R. B. (2017) <doi:10.1016/j.jmva.2017.05.005> for the multivariate skew-normal case.

Details

The DESCRIPTION file:

Index of help topics:

CensMFM-package         Finite Mixture of Multivariate Censored/Missing
                        Data
fit.FMMSNC              Fitting Finite Mixture of Multivariate
                        Distributions.
rMMSN                   Random Generator of Finite Mixture of
                        Multivariate Distributions.
rMMSN.contour           Pairwise Scatter Plots and Histograms for
                        Finite Mixture of Multivariate Distributions.
rMSN                    Generating from Multivariate Skew-normal and
                        Normal Random Distributions.

The CensMFM package provides comprehensive tools for fitting and analyzing finite mixture models on censored and/or missing data using several multivariate distributions. This package supports the normal, Student-t, and skew-normal distributions, facilitating point estimation and asymptotic inference through the empirical information matrix. Additionally, it allows for the generation of censored data.

Key functions include:

This package serves as an extension and complement to the methodologies presented in the paper by Lachos, V. H., Moreno, E. J. L., Chen, K. & Cabral, C. R. B. (2017) <doi:10.1016/j.jmva.2017.05.005>, specifically for the multivariate skew-normal case.

Author(s)

NA

Maintainer: NA

References

Cabral, C. R. B., Lachos, V. H., & Prates, M. O. (2012). Multivariate mixture modeling using skew-normal independent distributions. Computational Statistics & Data Analysis, 56(1), 126-142.

Prates, M. O., Lachos, V. H., & Cabral, C. (2013). mixsmsn: Fitting finite mixture of scale mixture of skew-normal distributions. Journal of Statistical Software, 54(12), 1-20.

C.E. Galarza, L.A. Matos, D.K. Dey & V.H. Lachos. (2019) On Moments of Folded and Truncated Multivariate Extended Skew-Normal Distributions. Technical report. ID 19-14. University of Connecticut.

F.H.C. de Alencar, C.E. Galarza, L.A. Matos & V.H. Lachos. (2019) Finite Mixture Modeling of Censored and Missing Data Using the Multivariate Skew-Normal Distribution. echnical report. ID 19-31. University of Connecticut.

See Also

fit.FMMSNC, rMSN, rMMSN and rMMSN.contour


[Package CensMFM version 3.1 Index]