design {CautiousLearning} | R Documentation |
Design of control charts based on the cautious learning approach
Description
These functions compute the control limits
of X (x.cl
), EWMA (ewma.cl
) and CUSUM (cusum.cl
)
control charts based on the cautious learning approach.
The stochastic approximation algorithm, described in
the Appendix A of Capizzi and Masarotto (2019), is used.
When openMP is supported, computation can be distribuited on multiple cores.
See omp
.
Usage
x.cl(m, arl0, alpha = 0.1, beta = 0.05, H = 200, A = 1.5, B = 50,
Ninit = 1000, Nfinal = 30000)
ewma.cl(lambda, m, arl0, alpha = 0.1, beta = 0.05, H = 200, A = 1.5, B = 50,
Ninit = 1000, Nfinal = 30000)
cusum.cl(k, m, arl0, alpha = 0.1, beta = 0.05, H = 200, A = 1.5, B = 50,
Ninit = 1000, Nfinal = 30000)
Arguments
lambda |
EWMA smoothing constant. |
k |
CUSUM reference value. |
m |
number of in-control observations used to estimate the process mean and standard deviation at the beginning of the monitoring phase. |
arl0 , alpha , beta , H |
desired in-control average run-length and constants defining the empirical guaranteed in-control performance condition. See equations (2) and (6) in Capizzi and Masarotto (2019). |
A , B |
constants controlling when the parameters estimate are updated.
See equation (3) in Capizzi and Masarotto (2019).
If |
Ninit , Nfinal |
number of iterations used in the stochastic approximation algorithm. See Capizzi and Masarotto (2019), Appendix A. |
Value
A list with the following elements:
chart |
string describing the control chart ("X", "EWMA" or "CUSUM"). |
lambda |
EWMA smoothing constant (only when
|
k |
CUSUM reference value (only when
|
limit |
numeric vector of length equal to five containing the
constants defining the cautiuos learning control limits, i.e,
|
Author(s)
Giovanna Capizzi and Guido Masarotto
References
Capizzi, G. and Masarotto, G. (2019) "Guaranteed In-Control Control Chart Performance with Cautious Parameter Learning", accepted for publication in Journal of Quality Technology, a copy of the paper can be obtained from the authors.
Examples
## Only for testing: the number of iterations is reduced
## to reduce the computing time
Ninit <- 50
Nfinal <- 100
H <- 50
x.cl(100, 500, Ninit=Ninit, Nfinal=Nfinal, H=H)
x.cl(100, 500, A=NA, B=NA, Ninit=Ninit, Nfinal=Nfinal, H=H)
ewma.cl(0.2, 100, 500, Ninit=Ninit, Nfinal=Nfinal, H=H)
cusum.cl(1, 100, 500, Ninit=Ninit, Nfinal=Nfinal, H=H)
## Using the default number of iterations
x.cl(100, 500)
x.cl(100, 500, A=NA, B=NA)
ewma.cl(0.2,100, 500)
cusum.cl(1, 100, 500)