plot.STE_internal {CausalMetaR} | R Documentation |
Plot method for objects of class "STE_internal"
Description
This function creates forest plots of objects of class "STE_internal".
Usage
## S3 method for class 'STE_internal'
plot(
x,
use_scb = FALSE,
header = c("Source", "Subgroup", ifelse(use_scb, "Estimate [95% SCB]",
"Estimate [95% CI]")),
source_names,
subgroup_names,
...
)
Arguments
x |
Object of class "STE_internal". |
use_scb |
logical scalar specifying whether the intervals in the forest plot should be simultaneous confidence bands (rather than confidence intervals). The default is |
header |
optional, vector of character strings of length 3, headers for the source, effect modifier subgroup and the estimates in the forest plot. |
source_names |
optional, vector of character strings specifying the names of the sources. Defaults are the values in |
subgroup_names |
optional, vector of character strings specifying the names of the effect modifier subgroups. Defaults are the values in |
... |
Other arguments, which are passed to |
Details
Note that users may need to custom set the argument ilab.xpos
which specifies the position (along the x-axis) of the effect modifier header and subgroup labels. See forest.rma
for further details.
Value
No value is returned.
See Also
Examples
si <- STE_internal(
X = dat_multisource[, 2:10],
Y = dat_multisource$Y,
EM = dat_multisource$EM,
S = dat_multisource$S,
A = dat_multisource$A,
cross_fitting = FALSE,
source_model = "MN.nnet",
source_model_args = list(),
treatment_model_type = "separate",
treatment_model_args = list(
family = binomial(),
SL.library = c("SL.glmnet", "SL.nnet", "SL.glm"),
cvControl = list(V = 5L)
),
outcome_model_args = list(
family = gaussian(),
SL.library = c("SL.glmnet", "SL.nnet", "SL.glm"),
cvControl = list(V = 5L)
)
)
plot(si)