influences.PR.missingdata {CaseCohortCoxSurvival} | R Documentation |
influences.PR.missingdata
Description
Computes the influences on the pure risk in the time interval [Tau1, Tau2] and for a given covariate profile x, from that on the log-relative hazard and cumulative baseline hazard, when covariate data is missing for certain individuals in the phase-two data.
Usage
influences.PR.missingdata(beta, Lambda0.Tau1Tau2, x = NULL, infl2.beta,
infl2.Lambda0.Tau1Tau2, infl3.beta, infl3.Lambda0.Tau1Tau2)
Arguments
beta |
vector of length |
Lambda0.Tau1Tau2 |
cumulative baseline hazard in [Tau1, Tau2]. |
x |
vector of length |
infl2.beta |
matrix with the overall influences on the log-relative hazard estimates. |
infl2.Lambda0.Tau1Tau2 |
vector with the overall influences on the cumulative baseline hazard estimate in [Tau1, Tau2]. |
infl3.beta |
matrix with the phase-three influences on the log-relative hazard estimates. |
infl3.Lambda0.Tau1Tau2 |
vector with the phase-three influences on the cumulative baseline hazard estimate in [Tau1, Tau2]. |
Details
influences.PR.missingdata
works for estimation from a case-cohort with design
weights and when covariate data was missing for certain individuals in the
phase-two data (i.e., case-cohort obtained from three phases of sampling).
If there are no missing covariates in the phase- two sample, use influences.PR
with either design weights or calibrated weights.
influences.PR.missingdata
uses the influence formulas provided in Etievant
and Gail (2023). More precisely, as in Section 5.4 if
estimated.weights = TRUE
, and as in Web Appendix H if
estimated.weights = FALSE
.
Value
infl.Pi.x.Tau1Tau2.hat
: vector with the overall influences on the pure risk estimate
in [Tau1, Tau2] and for covariate profile x
.
infl2.Pi.x.Tau1Tau2.hat
: vector with the phase-two influences on the pure risk estimate
in [Tau1, Tau2] and for covariate profile x
.
infl3.Pi.x.Tau1Tau2.hat
: vector with the phase-three influences on the pure risk estimate
in [Tau1, Tau2] and for covariate profile x
.
Pi.x.Tau1Tau2.hat
: pure risk estimate in [Tau1, Tau2] and for covariate profile x
.
References
Etievant, L., Gail, M.H. (2023). Cox model inference for relative hazard and pure risk from stratified weight-calibrated case-cohort data. Submitted.
See Also
estimation
, estimation.CumBH
, estimation.PR
,
influences.missingdata
, influences.RH.missingdata
,
influences.CumBH.missingdata
, influences
, influences.RH
, influences.CumBH
,
influences.PR
, robustvariance
and variance
.
Examples
data(dataexample.missingdata, package="CaseCohortCoxSurvival")
cohort <- dataexample.missingdata$cohort # a simulated cohort
casecohort <- dataexample.missingdata$casecohort # a simulated stratified case-cohort
# phase-two data: dataexample.missingdata$casecohort.phase2
riskmat.phase2 <- dataexample.missingdata$riskmat.phase2
dNt.phase2 <- dataexample.missingdata$dNt.phase2
B.phase2 <- dataexample.missingdata$B.phase2
Tau1 <- 0 # given time interval for the pure risk
Tau2 <- 8
x <- c(-1, 1, -0.6) # given covariate profile for the pure risk
v <- c(1, 1, 0.6) # over covariate profile
# Estimation using the stratified case-cohort with true known design weights
mod <- coxph(Surv(times, status) ~ X1 + X2 + X3, data = casecohort,
weight = weights.true, id = id, robust = TRUE)
estimation <- influences.missingdata(mod = mod, riskmat.phase2 = riskmat.phase2,
dNt.phase2 = dNt.phase2, Tau1 = Tau1,
Tau2 = Tau2, x = x)
beta.hat <- estimation$beta.hat
Lambda0.hat <- estimation$Lambda0.Tau1Tau2.hat
infl.beta <- estimation$infl.beta
infl.Lambda0 <- estimation$infl.Lambda0.Tau1Tau2
infl2.beta <- estimation$infl2.beta
infl2.Lambda0 <- estimation$infl2.Lambda0.Tau1Tau2
infl3.beta <- estimation$infl3.beta
infl3.Lambda0 <- estimation$infl3.Lambda0.Tau1Tau2
estimation2 <- influences.PR.missingdata(beta = beta.hat,
Lambda0.Tau1Tau2 = Lambda0.hat,
x = v, infl2.beta = infl2.beta,
infl2.Lambda0.Tau1Tau2 = infl2.Lambda0,
infl3.beta = infl3.beta,
infl3.Lambda0.Tau1Tau2 = infl3.Lambda0)
# print the overall influences on the pure risk estimate for profile v
#estimation2$infl.Pi.x.Tau1Tau2
# print the phase-two influences on the pure risk estimate for profile v
#estimation2$infl2.Pi.x.Tau1Tau2
# print the phase-three influences on the pure risk estimate for profile v
#estimation2$infl3.Pi.x.Tau1Tau2
# Estimation using the stratified case-cohort with estimated weights, and
# accounting for the estimation through the influences
mod.est <- coxph(Surv(times, status) ~ X1 + X2 + X3, data = casecohort,
weight = weights.est, id = id, robust = TRUE)
estimation.est <- influences.missingdata(mod.est,
riskmat.phase2 = riskmat.phase2,
dNt.phase2 = dNt.phase2,
estimated.weights = TRUE,
B.phase2 = B.phase2, Tau1 = Tau1,
Tau2 = Tau2, x = x)
beta.hat.est <- estimation.est$beta.hat
Lambda0.hat.est <- estimation.est$Lambda0.Tau1Tau2.hat
infl.beta.est <- estimation.est$infl.beta
infl.Lambda0.est <- estimation.est$infl.Lambda0.Tau1Tau2
infl2.beta.est <- estimation.est$infl2.beta
infl2.Lambda0.est <- estimation.est$infl2.Lambda0.Tau1Tau2
infl3.beta.est <- estimation.est$infl3.beta
infl3.Lambda0.est <- estimation.est$infl3.Lambda0.Tau1Tau2
estimation.est2 <- influences.PR.missingdata(beta = beta.hat.est,
Lambda0.Tau1Tau2 = Lambda0.hat.est,
x = v, infl2.beta = infl2.beta.est,
infl2.Lambda0.Tau1Tau2 = infl2.Lambda0.est,
infl3.beta = infl3.beta.est,
infl3.Lambda0.Tau1Tau2 = infl3.Lambda0.est)