bootSlope {CarletonStats} | R Documentation |
Bootstrap the slope of a simple linear regression line
Description
Bootstrap theslope of a simple linear regression line. The bootstrap mean and standard error are printed as well as a bootstrap percentile confidence interval.
Usage
bootSlope(x, ...)
## Default S3 method:
bootSlope(
x,
y,
conf.level = 0.95,
B = 10000,
plot.hist = TRUE,
xlab = NULL,
ylab = NULL,
title = NULL,
plot.qq = FALSE,
x.name = deparse(substitute(x)),
y.name = deparse(substitute(y)),
seed = NULL,
...
)
## S3 method for class 'formula'
bootSlope(formula, data, subset, ...)
Arguments
x |
a numeric vector. |
... |
further arguments to be passed to or from methods. |
y |
a numeric vector. |
conf.level |
confidence level for the bootstrap percentile interval. |
B |
number of times to resample (positive integer greater than 2). |
plot.hist |
a logical value. If |
xlab |
an optional character string for the x-axis label |
ylab |
an optional character string for the y-axis label |
title |
an optional character string giving the plot title |
plot.qq |
a logical value. If |
x.name |
Label for variable x |
y.name |
Label for variable y |
seed |
optional argument to |
formula |
a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data values and rhs a factor with two levels giving the corresponding groups. |
data |
an optional data frame containing the variables in the formula formula. By default the variables are taken from environment(formula). |
subset |
an optional vector specifying a subset of observations to be used. |
Details
Observations with missing values are removed.
Value
The command returns the slopes of the resampled observations.
Methods (by class)
-
bootSlope(default)
: Bootstrap the slope of a simple linear regression line -
bootSlope(formula)
: Bootstrap the slope of a simple linear regression line
Author(s)
Adam Loy, Laura Chihara
References
Tim Hesterberg's website https://www.timhesterberg.net/bootstrap-and-resampling
Examples
plot(states03$ColGrad, states03$InfMortality)
bootSlope(InfMortality ~ ColGrad, data = states03, B = 1000)
bootSlope(states03$ColGrad, states03$InfMortality, B = 1000)