canopy.sample.cluster.nocna {Canopy} | R Documentation |
MCMC sampling in tree space with pre-clustering of SNAs
Description
To sample the posterior trees with pre-clustering step of SNAs. Major function of Canopy.
Usage
canopy.sample.cluster.nocna(R, X, sna_cluster, K, numchain,
max.simrun, min.simrun, writeskip, projectname,
cell.line=NULL, plot.likelihood=NULL)
Arguments
R |
alternative allele read depth matrix |
X |
total read depth matrix |
sna_cluster |
cluster assignment for each mutation from the EM Binomial clustering algorithm |
K |
number of subclones (vector) |
numchain |
number of MCMC chains with random initiations |
max.simrun |
maximum number of simutation iterations for each chain |
min.simrun |
minimum number of simutation iterations for each chain |
writeskip |
interval to store sampled trees |
projectname |
name of project |
cell.line |
default to be FALSE, TRUE if input sample is cell line (no normal cell contamination) |
plot.likelihood |
default to be TRUE, posterior likelihood plot generated for check of
convergence and selection of burnin and thinning in
|
Value
List of sampleed trees in subtree space with different number of subclones; plot of posterior likelihoods in each subtree space generated (pdf format).
Author(s)
Yuchao Jiang yuchaoj@wharton.upenn.edu
Examples
data(toy3)
R = toy3$R; X = toy3$X
sna_cluster = toy3$sna_cluster
K = 3:5
numchain = 10
projectname = 'toy3'
# sampchain = canopy.sample.cluster.nocna(R = R, X = X,
# sna_cluster=sna_cluster, K = K, numchain = numchain,
# max.simrun = 40000, min.simrun = 10000, writeskip = 200,
# projectname = projectname,
# cell.line = TRUE, plot.likelihood = TRUE)