cvwavelet.image.after.impute {CVThresh} | R Documentation |
Cross-Validation Wavelet Shrinkage for two-dimensional data after imputation
Description
This function performs level-dependent cross-validation wavelet shrinkage for two-dimensional data given the cross-validation scheme and imputation values.
Usage
cvwavelet.image.after.impute(images, imagewd, imageimpute,
cv.index1=cv.index1, cv.index2=cv.index2,
cv.optlevel=cv.optlevel, cv.tol=cv.tol, cv.maxiter=cv.maxiter,
filter.number=2, ll=3)
Arguments
images |
noisy image |
imagewd |
two-dimensional wavelet transform |
imageimpute |
two-dimensional imputed values according to cross-validation scheme |
cv.index1 |
test dataset row index according to cross-validation scheme |
cv.index2 |
test dataset column index according to cross-validation scheme |
cv.optlevel |
thresholding levels |
cv.tol |
tolerance for cross-validation |
cv.maxiter |
maximum iteration for cross-validation |
filter.number |
specifies the smoothness of wavelet in the decomposition (argument of WaveThresh) |
ll |
specifies the lowest level to be thresholded |
Details
Calculating thresholding values and reconstructing noisy image given cross-validation scheme and imputation.
Value
Reconstruction of images and thresholding values by level-dependent cross-validation
imagecv |
reconstruction of images |
cvthresh |
thresholding values by level-dependent cross-validation |
See Also
cvwavelet.image
, cvtype.image
, cvimpute.image.by.wavelet
.