chi2cub {CUB} | R Documentation |
Pearson X^2
statistic
Description
Compute the X^2
statistic of Pearson for CUB models with one or two discrete
covariates for the feeling component.
Usage
chi2cub(m,ordinal,W,pai,gama)
Arguments
m |
Number of ordinal categories |
ordinal |
Vector of ordinal responses |
W |
Matrix of covariates for the feeling component |
pai |
Uncertainty parameter |
gama |
Vector of parameters for the feeling component, with length equal to NCOL(W)+1
to account for an intercept term (first entry of |
Details
No missing value should be present neither
for ordinal
nor for covariate matrices: thus, deletion or imputation procedures should be
preliminarily run.
Value
A list with the following components:
df |
Degrees of freedom |
chi2 |
Value of the Pearson fitting measure |
dev |
Deviance indicator |
References
Tutz, G. (2012). Regression for Categorical Data, Cambridge University Press, Cambridge
Examples
data(univer)
m<-7
pai<-0.3
gama<-c(0.1,0.7)
ordinal<-univer$informat; W<-univer$gender;
pearson<-chi2cub(m,ordinal,W,pai,gama)
degfree<-pearson$df
statvalue<-pearson$chi2
deviance<-pearson$dev
[Package CUB version 1.1.5 Index]